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Because of non-monotonicity, standard results for non-

smooth gradient descent require averaging.
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Tight analyses of non-smooth stochastic gradient descent

Input: 𝑋 ⊂ 𝑅𝑛, 𝑥1 ∈ 𝑅𝑛, 𝜂1, 𝜂2, …
For 𝑡 = 1,… , 𝑇, do:

• Query the gradient oracle to obtain 𝑔t ∈ 𝜕𝑓(𝑥𝑡)
• 𝑦𝑡+1 ← 𝑥𝑡 − 𝜂𝑡𝑔t
• 𝑥𝑡+1 ← Π𝑋 ( 𝑦𝑡+1 )

Endfor

Setting Standard Convergence Rates Optimal

Non-Smooth and
Strongly Convex 𝑓
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Non-Smooth and
Lipschitz 𝑓
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𝛻 𝑓(𝑥𝑡) > 0

𝑥𝑡+1 The main questions

1. Lipschitz functions: uniform averaging achieves optimal 

𝑂 Τ1 𝑡 rate whp.

2. Strongly convex functions: various algorithms achieve 

𝑂 Τ1 𝑡 in expectation, but not whp.

Optimal high probability bounds

Useful when it is infeasible to compute a true gradient. 

Strategy Expected UB High Prob. UB Expected LB

Uniform 
Averaging

𝑂 1/ 𝑡
[Nemirovski-Yudin `83]

𝑂 1/ 𝑡
[Azuma]

Ω 1/ 𝑡
[Nemirovski-Yudin `83]

Last 
Iterate

𝑂 Τlog 𝑡 𝑡
[Shamir-Zhang `13]

?
[Main 

Question 2]

?
[Main 

Question 1]

Prior Work: Strongly-convex functions

Strategy Expected UB High Prob. UB Expected LB

Uniform 
Averaging

𝑂 log(𝑡) /𝑡
[Nemirovski-Yudin `83]

𝑂 log(𝑡)/𝑡
[Kakade-Tewari `08]

Ω log(𝑡) /𝑡
[Rakhlin-Shamir-

Sridaran `12]

Epoch 
Averaging

𝑂 1/𝑡
[Hazan-Kale `11]

𝑂 log log 𝑡 /𝑡
[Hazan-Kale `11]

Ω 1/𝑡
[Nemirovski-Yudin `83]

Suffix 
Averaging

𝑂 1/𝑡
[Rakhlin-Shamir-

Sridaran `12]

𝑂 log log 𝑡 /𝑡
[Rakhlin-Shamir-

Sridaran `12]

[Question 3]

Ω 1/𝑡
[Nemirovski-Yudin `83]

Last 
Iterate

𝑂 Τlog 𝑡 𝑡
[Shamir-Zhang `13]

?
[Main 

Question 2]

?
[Main 

Question 1]

Theorem: Fix 𝑇 ∈ ℕ.  ∃ 1-Lipschitz 𝑓𝑇: 𝐵2
𝑇 → ℝ s.t.

executing GD from 𝑥1 = 0 with 𝜂𝑡 = 𝑐/ 𝑡 yields: 

𝑓𝑇 𝑥𝑇 − 𝑂𝑃𝑇 ≥
log 𝑇

32 𝑇
.    (Suboptimal convergence.)

𝑥3𝑥2
𝑥1

Instantiation of 𝑓𝑇 with 𝑇 = 3.

Theorem: Fix 𝑇 ∈ ℕ.  ∃ 3-Lipschitz and 1-strongly 
convex function 𝑓 ∶ 𝐵2

𝑇 → ℝ s.t. executing GD from 
𝑥1 = 0 with 𝜂𝑡 = 𝑐/𝑡 yields: 

𝑓 𝑥𝑇 − 𝑂𝑃𝑇 ≥
log 𝑇

4𝑇
.   (Suboptimal convergence.)

The function 𝒇𝑻:

max 𝑥𝑇

− Τ1 2 𝑇
0
0
⋮
0

, 𝑥𝑇

Τ1 8𝑇

− Τ2 2 𝑇
0
⋮
0

, 𝑥𝑇

Τ1 8𝑇
1/8(𝑇 − 1)

− Τ2 2 𝑇
⋮
0

, … , 𝑥𝑇

Τ1 8𝑇
1/8(𝑇 − 1)
Τ1 8(𝑇 − 2)

⋮
1/8

GD on 𝒇𝑻 produces:

𝑥𝑇 = Θ Τ1 𝑇
1
⋮
1

.

𝔼 ො𝑔𝑡 𝑥1, … , 𝑥𝑡] ∈ 𝜕𝑓 𝑥𝑡 .
Assumptions:

∥ ො𝑔𝑡 ∥ is a.s. bounded.

𝑓𝑇 is defined similarly to the definition of 𝑓𝑇 in the Lipschitz 

case, with an additional regularization term to ensure strong 

convexity.

The Generalized Freedman Inequality

Stochastic gradient descent

Our Contribution: Lipschitz functions

Strategy Expected UB High Prob. UB Expected LB

Uniform 
Averaging

𝑂 1/ 𝑡
[Nemirovski-Yudin `83]

𝑂 1/ 𝑡
[Azuma]

Ω 1/ 𝑡
[Nemirovski-Yudin `83]

Last 
Iterate

𝑂 Τlog 𝑡 𝑡
[Shamir-Zhang `13]

𝑂 Τlog 𝑡 𝑡

[This work]
Ω Τlog 𝑡 𝑡

[This work]

Our Contribution: Strongly-convex functions

Strategy Expected UB High Prob. UB Expected LB

Uniform 
Averaging

𝑂 log(𝑡) /𝑡
[Nemirovski-Yudin `83]

𝑂 log(𝑡)/𝑡
[Kakade-Tewari `08]

Ω log(𝑡) /𝑡
[Rakhlin-Shamir-

Sridaran `12]

Epoch 
Averaging

𝑂 1/𝑡
[Hazan-Kale `11]

𝑂 log log 𝑡 /𝑡
[Hazan-Kale `11]

Ω 1/𝑡
[Nemirovski-Yudin `83]

Suffix 
Averaging

𝑂 1/𝑡
[Rakhlin-Shamir-

Sridaran `12]

𝑂(1/𝑡)

[This work]
Ω 1/𝑡

[Nemirovski-Yudin `83]

Last 
Iterate

𝑂 Τlog 𝑡 𝑡
[Shamir-Zhang `13]

𝑂(log(𝑡)/𝑡)

[This work]
Ω(log 𝑡 /𝑡)

[This work]

Main Question 1: What is the expected sub-optimality of 

the last iterate returned by gradient descent? [Shamir ‘12]

Main Question 2: Can one obtain a high probability 

convergence rate for the sub-optimality of the last iterate 

which matches the expected rate? [Shamir ‘12]

Question 3: Is there an algorithm which achieves 

the optimal 𝑶 Τ𝟏 𝒕 rate with high probability? 

High Probability Upper Bounds:

Theorem: Let 𝑓 ∶ 𝑋 → ℝ be convex and 1-Lipschitz and 
1-strongly convex. Then, for every 𝛿 ∈ 0,1 :

𝑓 𝑥𝑇 − 𝑂𝑃𝑇 ≤ 𝑂
log(𝑇)⋅log(1/𝛿)

𝑇
w.p. ≥ 1 − 𝛿.

Lipschitz case:

Strongly convex case:

Lipschitz case:

Strongly convex case:

1. Key tool in proving high probability upper bound for 

error of final iterate in strongly convex and non-strongly 

convex case, as well as for optimal high probability 

bound for suffix averaging. 

2. Can recover Freedmans’ inequality by setting 𝛼 = 0.

Theorem: Let 𝑑1, 𝑑2, … be the increments of a 

martingale. Suppose 𝑑𝑖
2 ≤ 𝑣𝑖 ∈ ℱ𝑖−1. Let 𝑀𝑛 =

σ𝑖=1
𝑛 𝐷_𝑖 and 𝑉𝑛 = σ𝑖=1

𝑛 𝑣𝑖. Then,

Pr 𝑀𝑛 ≥ 𝑥 𝑎𝑛𝑑 𝑉𝑛 ≤ 𝛼𝑀𝑛 + 𝛽 ≤ exp −
𝑥

4𝛼 + 8𝛽
.

Theorem: Let 𝑓 ∶ 𝑋 → ℝ be convex and 1-Lipschitz with 
𝑑𝑖𝑎𝑚 𝑋 bounded.
Then, for every 𝛿 ∈ 0,1 :

𝑓 𝑥𝑇 − 𝑂𝑃𝑇 ≤ 𝑂
log(𝑇)⋅log(1/𝛿)

𝑇
w.p. ≥ 1 − 𝛿.Input: 𝑋 ⊂ 𝑅𝑛, 𝑥1 ∈ 𝑅𝑛, 𝜂1, 𝜂2, …

For 𝑡 = 1,… , 𝑇, do:
• Query the gradient oracle to obtain ො𝑔t
• 𝑦𝑡+1 ← 𝑥𝑡 − 𝜂𝑡 ො𝑔t
• 𝑥𝑡+1 ← Π𝑋 ( 𝑦𝑡+1 )

Endfor

High Probability Upper Bound Sketch

1. Can split analysis into analysis of final iterate for deterministic GD and 

the analysis of the total accumulated noise.

2. Deterministic analysis is handled by [Shamir-Zhang ’13].

3. Suffices to analyze the total amount of noise accumulated after 𝑇 steps. 

Call this 𝑍𝑇.

4. The noise, 𝑍𝑇 , is a martingale. Write: 𝑍𝑇 = σ𝑖=1
𝑇 𝑑𝑖

5. Can show whp:

𝑉𝑇 𝑍𝑇 ≤
log2 𝑇

𝑇
+
log 𝑇

𝑇
𝑍𝑇 .

6. Apply Generalized Freedman Inequality.

Optimal High Prob. Strongly Convex Algorithm 

Theorem: Let 𝑓 ∶ 𝑋 → ℝ be convex and 1-Lipschitz and 
1-strongly convex. Then, for every 𝛿 ∈ 0,1 :

𝑓 σ𝑡=𝑇/2
𝑇 𝑥𝑡 − 𝑂𝑃𝑇 ≤ 𝑂

log(1/𝛿)

𝑇
w.p. ≥ 1 − 𝛿.

The proof of this result requires a high probability bound of 

𝑶 𝟏/𝑻 on the error of the suffix average.

First known result which obtains the optimal 𝑂 1/𝑇 rate with high probability for 

strongly convex functions.
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