Nicholas J.A. Harvey

Textbook non-smooth gradient descent Input: $X \subset \mathbb{R}^n$, $x_1 \in \mathbb{R}^n$, η_1, η_2, \dots For t = 1, ..., T, do: • Query the gradient oracle to obtain $g_t \in \partial f(x_t)$ • $y_{t+1} \leftarrow x_t - \eta_t g_t$ • $x_{t+1} \leftarrow \Pi_X (y_{t+1})$ Endfor Standard Convergence Rates Optimal Setting **Non-Smooth** and $\frac{1}{2}\sum$ O(1/t)**Strongly Conve** $-OPT = O(\log(t)/t)$ **Non-Smooth** and $O(1/\sqrt{t})$ Lipschitz $-OPT = \mathcal{O}(1/\sqrt{t})$ Because of non-monotonicity, standard results for nonsmooth gradient descent require averaging. f(x) $\nabla f(x_t) > 0$ _____ -----______ **Stochastic gradient descent** Useful when it is infeasible to compute a true gradient. Input: $X \subset \mathbb{R}^n, x_1 \in \mathbb{R}^n, \eta_1, \eta_2, \dots$ For t = 1, ..., T, do: • Query the gradient oracle to obtain \hat{g}_t • $y_{t+1} \leftarrow x_t - \eta_t \hat{g}_t$ • $x_{t+1} \leftarrow \prod_X (y_{t+1})$ Endfor Assumptions: $\mathbb{E}[\hat{g}_t \mid x_1, \dots, x_t] \in \partial f(x_t).$ $\| \hat{g}_t \|$ is a.s. bounded.

Prior Work: Lipschitz functions Strategy Expe Uniform Averaging [Nem Last Iterate [Shar **Prior Work: Strongly-convex functions** Strategy Expe Uniform Averaging [Nem Epoch Averaging Suffix Averaging Last [Shan Iterate The main questions **Main Question 1**: What is the expected sub-optimality of the last iterate returned by gradient descent? [Shamir '12] Main Question 2: Can one obtain a high probability convergence rate for the sub-optimality of the last iterate

<u>Question 3</u>: Is there an algorithm which achieves the optimal O(1/t) rate with high probability?

 $O(1/\sqrt{t})$ rate whp.

Tight analyses of non-smooth stochastic gradient descent

Christopher Liaw

University of British Columbia

ected UB	High Prob. UB	Expected LB
$O(1/\sqrt{t})$ irovski-Yudin `83]	$Oig(1/\sqrt{t}ig)$ [Azuma]	$\Omega(1/\sqrt{t})$ [Nemirovski-Yudin `83]
$\log(t)/\sqrt{t}$) amir-Zhang `13]	? [Main Question 2]	? [Main Question 1]

cted UB	High Prob. UB	Expected LB
$\log(t)/t)$ rovski-Yudin `83]	$O(\log(t)/t)$ [Kakade-Tewari `08]	$\Omega(\log(t)/t)$ [Rakhlin-Shamir- Sridaran `12]
O(1/t)izan-Kale`11]	O(loglogt/t) [Hazan-Kale`11]	$\Omega(1/t)$ [Nemirovski-Yudin `83]
O(1/t)khlin-Shamir- ridaran `12]	O(log log t /t) [Rakhlin-Shamir- Sridaran `12] [Question 3]	$\Omega(1/t)$ [Nemirovski-Yudin `83]
$(\log(t)/t)$ mir-Zhang `13]	? [Main Question 2]	? [Main Question 1]

which matches the expected rate? [Shamir '12]

Optimal high probability bounds

1. Lipschitz functions: uniform averaging achieves optimal

2. Strongly convex functions: various algorithms achieve O(1/t) in expectation, but not whp.

Our Contribution: Lipschitz functions

Strategy	Expected UB	High Prob.
Uniform Averaging	$Oig(1/\sqrt{t}ig)$ [Nemirovski-Yudin `83]	0(1/√i [Azuma]
Last Iterate	$O(\log(t)/\sqrt{t})$ [Shamir-Zhang `13]	$O(\log(t)/t)$

Our Contribution: Strongly-convex functions

Strategy	Expected UB	High Prob. UB	Expected LB
Uniform Averaging	$O(\log(t)/t)$ [Nemirovski-Yudin `83]	$O(\log(t)/t)$ [Kakade-Tewari `08]	$\Omega(\log(t)/t)$ [Rakhlin-Shamir- Sridaran `12]
Epoch Averaging	O(1/t)[Hazan-Kale `11]	O(loglogt/t) [Hazan-Kale`11]	$\Omega(1/t)$ [Nemirovski-Yudin `83]
Suffix Averaging	O(1/t) [Rakhlin-Shamir- Sridaran `12]	<i>0</i> (1/ <i>t</i>) [This work]	$\Omega(1/t)$ [Nemirovski-Yudin `83]
Last Iterate	$O(\log(t)/t)$ [Shamir-Zhang`13]	0(log(t)/t) [This work]	$\Omega(\log(t)/t)$ [This work]

High Probability Upper Bounds:

Lipschitz case:

<u>Theorem</u> : Let $f : X \to \mathbb{R}$ be convex
diam(X) bounded.

Then, for every $\delta \in (0,1)$:

$$f(x_T) - OPT \le O\left(\frac{\log(T) \cdot \log(1/T)}{\sqrt{T}}\right)$$

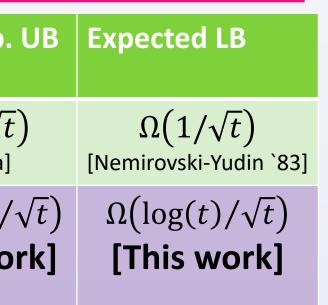
Strongly convex case:

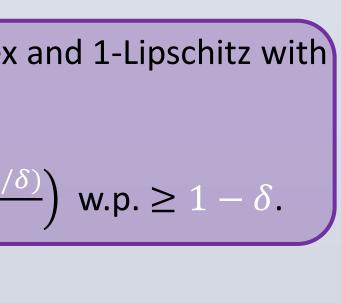
<u>Theorem</u> : Let $f : X \rightarrow I$	${\mathbb R}$ be convex
1-strongly convex. Ther	· ·
$f(x_T) - OPT \le O\left(\right)$	$\log(T) \cdot \log(1/q)$
$\int (x_T) O(T) \leq O(T)$	

The proof of this result requires a high probability bound of O(1/T) on the error of the suffix average.

Yaniv Plan

Sikander Randhawa

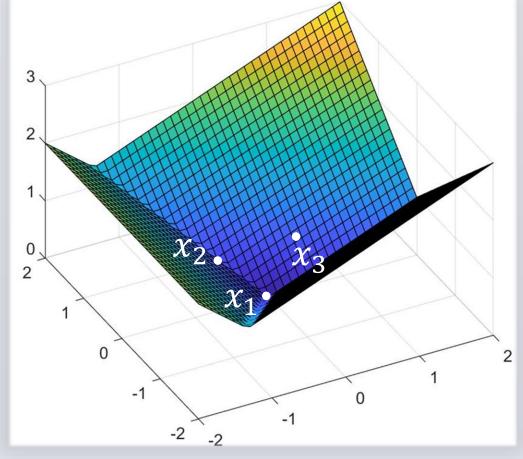




and 1-Lipschitz and $\in (0,1)$: -) w.p. $\geq 1 - \delta$.

Lower Bounds

Lipschitz case: **<u>Theorem</u>**: Fix $T \in \mathbb{N}$. \exists 1-Lipschitz $f_T : B_2^T \to \mathbb{R}$ s.t. executing GD from $x_1 = 0$ with $\eta_t = c/\sqrt{t}$ yields: $f_T(x_T) - OPT \ge \frac{\log T}{32\sqrt{T}}$. (Suboptimal convergence.)



Instantiation of f_T with T = 3.

The function f_T :

$$\max \left\{ x^{T} \begin{pmatrix} -1/2\sqrt{T} \\ 0 \\ \vdots \\ 0 \end{pmatrix}, x^{T} \begin{pmatrix} 1/8T \\ -\sqrt{2}/2\sqrt{T} \\ 0 \\ \vdots \\ 0 \end{pmatrix}, x^{T} \begin{pmatrix} 1/8T \\ 1/8(T-1) \\ -\sqrt{2}/2\sqrt{T} \\ \vdots \\ 0 \end{pmatrix}, \dots, x^{T} \begin{pmatrix} 1/8T \\ 1/8(T-1) \\ 1/8(T-2) \\ \vdots \\ 1/8 \end{pmatrix} \right\}$$

GD on f_T produces:

$$x_T = \Theta(1/\sqrt{T}) \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}.$$

Strongly convex case:

<u>Theorem</u>: Fix $T \in \mathbb{N}$. \exists 3-Lipschitz and 1-strongly convex function $f : B_2^T \to \mathbb{R}$ s.t. executing GD from $x_1 = 0$ with $\eta_t = c/t$ yields: $f(x_T) - OPT \ge \frac{\log T}{AT}$. (Suboptimal convergence.)

 f_T is defined similarly to the definition of f_T in the Lipschitz case, with an additional regularization term to ensure strong convexity.

The Generalized Freedman Inequality

<u>Theorem</u>: Let d_1, d_2, \dots be the increments of a martingale. Suppose $d_i^2 \le v_i \in \mathcal{F}_{i-1}$. Let $M_n = \sum_{i=1}^n D_i$ and $V_n = \sum_{i=1}^n v_i$. Then,

 $\Pr[M_n \ge x \text{ and } V_n \le \alpha M_n + \beta] \le \exp\left(-\frac{x}{4\alpha + 8\beta}\right)$

- 1. Key tool in proving high probability upper bound for error of final iterate in strongly convex and non-strongly convex case, as well as for optimal high probability bound for suffix averaging.
- Can recover Freedmans' inequality by setting $\alpha = 0$.

High Probability Upper Bound Sketch

- . Can split analysis into analysis of final iterate for deterministic GD and the analysis of the total accumulated noise.
- 2. Deterministic analysis is handled by [Shamir-Zhang '13].
- 3. Suffices to analyze the total amount of noise accumulated after T steps. Call this Z_T .
- 4. The noise, Z_T , is a martingale. Write: $Z_T = \sum_{i=1}^T d_i$
- 5. Can show whp:

$$V_T(\mathbf{Z}_T) \leq \frac{\log^2(T)}{T} + \frac{\log(T)}{\sqrt{T}} \mathbf{Z}_T.$$

6. Apply Generalized Freedman Inequality.

Optimal High Prob. Strongly Convex Algorithm

<u>Theorem</u>: Let $f : X \to \mathbb{R}$ be convex and 1-Lipschitz and 1-strongly convex. Then, for every $\delta \in (0,1)$: $f\left(\sum_{t=T/2}^{T} x_t\right) - OPT \le O\left(\frac{\log(1/\delta)}{T}\right) \text{ w.p.} \ge 1 - \delta.$

First known result which obtains the optimal O(1/T) rate with high probability for strongly convex functions.

References

[Hazan-Kale '11] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex optimization. Machine Learning, 69(2-3):169-192, 2007.

[Shamir-Zhang '13] Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes. Proceedings of the 30th International Conference on Machine Learning, PMLR, 28(1):71–79, 2013.

[Shamir '12] Ohad Shamir. Open problem: Is averaging needed for strongly convex stochastic gradient descent? Proceedings of the 25th Annual Conference on Learning Theory, PMLR, 23:47.1–47.3, 2012. [Rakhlin-Shamir-Sridaran '12] Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent optimal for strongly convex stochastic optimization. In Proceedings of ICML, 2012. [Nemirovski-Yudin '83] A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in

optimization. Wiley, 1983. [Kakade-Tewari '08] Sham M. Kakade and Ambuj Tewari. On the generalization ability of online strongly convex programming algorithms. In NIPS, pages 801–808, 2008.