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Typically use averaging to get 
around this issue.
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For Lipschitz functions.

Setting for today: Lipschitz and Non-Smooth functions
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▪ do the individual iterates’ values of GD converge to OPT? If so, at what rate?
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log 𝑇

𝑇
(sub-optimal).

The question we address: 

▪ Is 𝒪
log 𝑇

𝑇
the right rate of convergence for the iterates of GD? [Shamir ’12]
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Main Result 1: lower bound, Lipschitz case.

Iteration

E
rr

o
r

𝑓 𝑥𝑡 − 𝑂𝑃𝑇

ൗln 1000
19 1000 Python simulation of GD for this 𝑓.

𝑇 consecutive iterations of 
increase!

At step 𝑇, error is Ω ൗ
log(𝑇)

𝑇
.

Fix 𝑇 = 1000. 



Stochastic Gradient Descent: definition.
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Our lower bound shows this is tight, in expectation.
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Main Question 2: high probability bounds?

“Another issue is obtaining a bound which holds with probability 𝟏 − 𝜹 and
logarithmic dependence on 𝟏/𝜹. An extra $20 will be awarded for proving a 
tight bound on the suboptimality of [the last iterate] which holds in high 
probability.”

Shamir’s Open Question [COLT ’12]:
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Generalized Freedman Inequality: a martingale concentration 
inequality useful when the variance is bounded by the martingale itself.

The Generalized Freedman Inequality is a key tool in several high probability bounds (last iterate, suffix averaging, … ).



Lipschitz Functions
Return 
Scheme

Deterministic & Expected UB High Probability UB Deterministic LB

Uniform 
Averaging

𝑂 1/ 𝑇

[Nemirovski-Yudin ’83]

𝑂 1/ 𝑇

[Azuma]

Ω 1/ 𝑇

[Nemirovski-Yudin ’83]

Last Iterate 𝑂 log 𝑇 / 𝑇

[Shamir-Zhang ’13]
??? ???

Strongly Convex & Lipschitz Functions
Return 
Scheme

Deterministic & Expected 
UB

High Probability UB Deterministic LB

Uniform 
Averaging

𝑂 log(𝑇)/𝑇
[Hazan-Agarwal-Kale ’07]

𝑂 log 𝑇 /𝑇
[Kakade-Tewari ’08]

Ω log(T)/𝑇 (expectation)
[Rakhlin-Shamir-Sridharan ’12]

Epoch-based 
Averaging

𝑂 1/𝑇
[Hazan-Kale ’11]

𝑂 log(log𝑇) /𝑇
[Hazan-Kale ’11]

Ω 1/𝑇
[Nemirovski−Yudin ’83]

Suffix 
Averaging

𝑂 1/𝑇
[Rakhlin-Shamir-Sridharan ’12]

𝑂 log(logT)/𝑇
[Rakhlin-Shamir-Sridharan ’12]

Ω 1/𝑇
[Nemirovski−Yudin ’83]

Last Iterate 𝑂 log 𝑇 /𝑇
[Shamir-Zhang ’13]

??? ???



Lipschitz Functions
Return 
Scheme

Deterministic & Expected UB High Probability UB Deterministic LB

Uniform 
Averaging

𝑂 1/ 𝑇

[Nemirovski-Yudin ’83]

𝑂 1/ 𝑇

[Azuma]

Ω 1/ 𝑇

[Nemirovski-Yudin ’83]

Last Iterate 𝑂 log 𝑇 / 𝑇

[Shamir-Zhang ’13]
??? ???

Strongly Convex & Lipschitz Functions
Return 
Scheme

Deterministic & Expected 
UB

High Probability UB Deterministic LB

Uniform 
Averaging

𝑂 log(𝑇)/𝑇
[Hazan-Agarwal-Kale ’07]

𝑂 log 𝑇 /𝑇
[Kakade-Tewari ’08]

Ω log(T)/𝑇 (expectation)
[Rakhlin-Shamir-Sridharan ’12]

Epoch-based 
Averaging

𝑂 1/𝑇
[Hazan-Kale ’11]

𝑂 log(log𝑇) /𝑇
[Hazan-Kale ’11]

Ω 1/𝑇
[Nemirovski−Yudin ’83]

Suffix 
Averaging

𝑂 1/𝑇
[Rakhlin-Shamir-Sridharan ’12]

𝑂 log(logT)/𝑇
[Rakhlin-Shamir-Sridharan ’12]

Ω 1/𝑇
[Nemirovski−Yudin ’83]

Last Iterate 𝑂 log 𝑇 /𝑇
[Shamir-Zhang ’13]

??? ???



Lipschitz Functions
Return 
Scheme

Deterministic & Expected UB High Probability UB Deterministic LB

Uniform 
Averaging

𝑂 1/ 𝑇

[Nemirovski-Yudin ’83]

𝑂 1/ 𝑇

[Azuma]

Ω 1/ 𝑇

[Nemirovski-Yudin ’83]

Last Iterate 𝑂 log 𝑇 / 𝑇

[Shamir-Zhang ’13]

𝑂 log(𝑇) / 𝑇

[This work]

Ω log(𝑇) / 𝑇

[This work]

Strongly Convex & Lipschitz Functions
Return 
Scheme

Deterministic & Expected 
UB

High Probability UB Deterministic LB

Uniform 
Averaging

𝑂 log(𝑇)/𝑇
[Hazan-Agarwal-Kale ’07]

𝑂 log 𝑇 /𝑇
[Kakade-Tewari ’08]

Ω log(T)/𝑇 (expectation)
[Rakhlin-Shamir-Sridharan ’12]

Epoch-based 
Averaging

𝑂 1/𝑇
[Hazan-Kale ’11]

𝑂 log(log𝑇) /𝑇
[Hazan-Kale ’11]

Ω 1/𝑇
[Nemirovski−Yudin ’83]

Suffix 
Averaging

𝑂 1/𝑇
[Rakhlin-Shamir-Sridharan ’12]

𝑂 1/𝑇
[This work]

Ω 1/𝑇
[Nemirovski−Yudin ’83]

Last Iterate 𝑂 log 𝑇 /𝑇
[Shamir-Zhang ’13]

𝑂 log(𝑇) /𝑇
[This work]

Ω log(𝑇)/𝑇
[This work]

* dependence on log(1/𝛿) is not completely tight



Thank you!
Questions?

Come see us at poster 168!


