
Tight Analyses for Non-Smooth
Stochastic Gradient Descent

(UBC)
Sikander Randhawa

Nick Harvey Chris Liaw Yaniv Plan
(UBC) (UBC) (UBC)

Gradient Descent: basics.

Definition (Gradient Descent): 𝑥𝑡+1 ← 𝑥𝑡 − 𝜂𝑡𝑔𝑡 where 𝑔𝑡 ∈ 𝜕𝑓 𝑥𝑡 .

Gradient Descent: basics.

Definition (Gradient Descent): 𝑥𝑡+1 ← 𝑥𝑡 − 𝜂𝑡𝑔𝑡 where 𝑔𝑡 ∈ 𝜕𝑓 𝑥𝑡 .

There are still basic questions that have yet to be answered.

Gradient Descent: basics.

Assumption on 𝒇 Standard Convergence Rates

Smooth and
Strongly Convex

𝑓 𝑥𝑡 − 𝑂𝑃𝑇 = 𝒪(exp −𝑡)

Smooth 𝑓 𝑥𝑡 − 𝑂𝑃𝑇 = 𝒪(1/𝑡)

Non-Smooth and
Strongly Convex 𝑓

1

𝑡

𝑖=1

𝑡

𝑥𝑖 − 𝑂𝑃𝑇 = 𝒪(log(𝑡) /𝑡)

Non-Smooth and
Lipschitz 𝑓

1

𝑡

𝑖=1

𝑡

𝑥𝑖 − 𝑂𝑃𝑇 = 𝒪(1/ 𝑡)

Definition (Gradient Descent): 𝑥𝑡+1 ← 𝑥𝑡 − 𝜂𝑡𝑔𝑡 where 𝑔𝑡 ∈ 𝜕𝑓 𝑥𝑡 .

There are still basic questions that have yet to be answered.

Gradient Descent: basics.

Assumption on 𝒇 Standard Convergence Rates

Smooth and
Strongly Convex

𝑓 𝑥𝑡 − 𝑂𝑃𝑇 = 𝒪(exp −𝑡)

Smooth 𝑓 𝑥𝑡 − 𝑂𝑃𝑇 = 𝒪(1/𝑡)

Non-Smooth and
Strongly Convex 𝑓

1

𝑡

𝑖=1

𝑡

𝑥𝑖 − 𝑂𝑃𝑇 = 𝒪(log(𝑡) /𝑡)

Non-Smooth and
Lipschitz 𝑓

1

𝑡

𝑖=1

𝑡

𝑥𝑖 − 𝑂𝑃𝑇 = 𝒪(1/ 𝑡)

Definition (Gradient Descent): 𝑥𝑡+1 ← 𝑥𝑡 − 𝜂𝑡𝑔𝑡 where 𝑔𝑡 ∈ 𝜕𝑓 𝑥𝑡 .

There are still basic questions that have yet to be answered.

We focus on
non-smooth
functions.

Gradient Descent: basics.

Assumption on 𝒇 Standard Convergence Rates

Smooth and
Strongly Convex

𝑓 𝑥𝑡 − 𝑂𝑃𝑇 = 𝒪(exp −𝑡)

Smooth 𝑓 𝑥𝑡 − 𝑂𝑃𝑇 = 𝒪(1/𝑡)

Non-Smooth and
Strongly Convex 𝑓

1

𝑡

𝑖=1

𝑡

𝑥𝑖 − 𝑂𝑃𝑇 = 𝒪(log(𝑡) /𝑡)

Non-Smooth and
Lipschitz 𝑓

1

𝑡

𝑖=1

𝑡

𝑥𝑖 − 𝑂𝑃𝑇 = 𝒪(1/ 𝑡)

Standard results in non-smooth setting
require averaging of iterates.

Definition (Gradient Descent): 𝑥𝑡+1 ← 𝑥𝑡 − 𝜂𝑡𝑔𝑡 where 𝑔𝑡 ∈ 𝜕𝑓 𝑥𝑡 .

There are still basic questions that have yet to be answered.

We focus on
non-smooth
functions.

Gradient Descent: basics.

Assumption on 𝒇 Standard Convergence Rates

Smooth and
Strongly Convex

𝑓 𝑥𝑡 − 𝑂𝑃𝑇 = 𝒪(exp −𝑡)

Smooth 𝑓 𝑥𝑡 − 𝑂𝑃𝑇 = 𝒪(1/𝑡)

Non-Smooth and
Strongly Convex 𝑓

1

𝑡

𝑖=1

𝑡

𝑥𝑖 − 𝑂𝑃𝑇 = 𝒪(log(𝑡) /𝑡)

Non-Smooth and
Lipschitz 𝑓

1

𝑡

𝑖=1

𝑡

𝑥𝑖 − 𝑂𝑃𝑇 = 𝒪(1/ 𝑡)

Standard results in non-smooth setting
require averaging of iterates.

Definition (Gradient Descent): 𝑥𝑡+1 ← 𝑥𝑡 − 𝜂𝑡𝑔𝑡 where 𝑔𝑡 ∈ 𝜕𝑓 𝑥𝑡 .

Averaging is optimal for non-
smooth Lipschitz functions.

There are still basic questions that have yet to be answered.

We focus on
non-smooth
functions.

Gradient Descent: basics.

Assumption on 𝒇 Standard Convergence Rates

Smooth and
Strongly Convex

𝑓 𝑥𝑡 − 𝑂𝑃𝑇 = 𝒪(exp −𝑡)

Smooth 𝑓 𝑥𝑡 − 𝑂𝑃𝑇 = 𝒪(1/𝑡)

Non-Smooth and
Strongly Convex 𝑓

1

𝑡

𝑖=1

𝑡

𝑥𝑖 − 𝑂𝑃𝑇 = 𝒪(log(𝑡) /𝑡)

Non-Smooth and
Lipschitz 𝑓

1

𝑡

𝑖=1

𝑡

𝑥𝑖 − 𝑂𝑃𝑇 = 𝒪(1/ 𝑡)

Standard results in non-smooth setting
require averaging of iterates.

Definition (Gradient Descent): 𝑥𝑡+1 ← 𝑥𝑡 − 𝜂𝑡𝑔𝑡 where 𝑔𝑡 ∈ 𝜕𝑓 𝑥𝑡 .

Averaging is optimal for non-
smooth Lipschitz functions.

There are still basic questions that have yet to be answered.

We focus on
non-smooth
functions.

Needs 𝜂𝑡 = ൗ1 𝑡

Non-smooth functions: why average?

If 𝑓 is smooth, one can choose 𝜂𝑡 such that 𝑓 𝑥𝑡+1 ≤ 𝑓(𝑥𝑡) for every 𝑡.

Smoothness ⇒ iterates are monotonically decreasing in value.

Non-smooth functions: why average?

If 𝑓 is smooth, one can choose 𝜂𝑡 such that 𝑓 𝑥𝑡+1 ≤ 𝑓(𝑥𝑡) for every 𝑡.

Smoothness ⇒ iterates are monotonically decreasing in value.

Non-smooth functions can change direction rapidly.

It is possible that 𝑓 𝑥𝑡+1 > 𝑓(𝑥𝑡).

𝑥𝑡𝑥𝑡+1

Non-smooth functions: why average?

If 𝑓 is smooth, one can choose 𝜂𝑡 such that 𝑓 𝑥𝑡+1 ≤ 𝑓(𝑥𝑡) for every 𝑡.

Smoothness ⇒ iterates are monotonically decreasing in value.

Non-smooth functions can change direction rapidly.

It is possible that 𝑓 𝑥𝑡+1 > 𝑓(𝑥𝑡).

𝑥𝑡𝑥𝑡+1

Typically use averaging to get
around this issue.

A basic question: what about the individual iterates?

Shamir’s Open Questions [COLT ’12]:

A basic question: what about the individual iterates?

($50) “What is the suboptimality of the last iterate returned by GD?”

Shamir’s Open Questions [COLT ’12]:

A basic question: what about the individual iterates?

($50) “What is the suboptimality of the last iterate returned by GD?”

($20) “will be awarded for a tight high probability bound on the suboptimality
of [the last iterate].”

Shamir’s Open Questions [COLT ’12]:

A basic question: what about the individual iterates?

($50) “What is the suboptimality of the last iterate returned by GD?”

($20) “will be awarded for a tight high probability bound on the suboptimality
of [the last iterate].”

Shamir’s Open Questions [COLT ’12]:

We answer both of these questions.

For strongly-convex and Lipschitz functions.

For Lipschitz functions.

Setting for today: Lipschitz and Non-Smooth functions

Main Question 1: convergence of individual iterates?

[Nesterov-Shikhman ’15]: give algorithm where iterates’ values converge to
OPT at the optimal rate.

Main Question 1: convergence of individual iterates?

Motivates another question:
▪ do the individual iterates’ values of GD converge to OPT? If so, at what rate?

[Nesterov-Shikhman ’15]: give algorithm where iterates’ values converge to
OPT at the optimal rate.

Main Question 1: convergence of individual iterates?

[Nesterov-Shikhman ’15]: give algorithm where iterates’ values converge to
OPT at the optimal rate.

Motivates another question:
▪ do the individual iterates’ values of GD converge to OPT? If so, at what rate?

➢ Best upper bound [Shamir-Zhang ’13]: 𝒪
log 𝑇

𝑇
(sub-optimal).

Main Question 1: convergence of individual iterates?

[Nesterov-Shikhman ’15]: give algorithm where iterates’ values converge to
OPT at the optimal rate.

Motivates another question:
▪ do the individual iterates’ values of GD converge to OPT? If so, at what rate?

➢ Best upper bound [Shamir-Zhang ’13]: 𝒪
log 𝑇

𝑇
(sub-optimal).

The question we address:

▪ Is 𝒪
log 𝑇

𝑇
the right rate of convergence for the iterates of GD? [Shamir ’12]

Main Result 1: lower bound, Lipschitz case.

Theorem: Fix 𝑇 ∈ ℕ.

Main Result 1: lower bound, Lipschitz case.

Theorem: Fix 𝑇 ∈ ℕ. Then ∃ 1-Lipschitz 𝑓 ∶ 𝐵2
𝑇 → ℝ s.t. 𝑂𝑃𝑇 = 𝑓(0) =

0 and executing GD from 𝑥1 = 0 with 𝜂𝑡 = 𝑐/ 𝑡 yields:

Remark: It is possible to make the function independent of 𝑇 by working with a function from ℓ2 → ℝ.

Main Result 1: lower bound, Lipschitz case.

Theorem: Fix 𝑇 ∈ ℕ. Then ∃ 1-Lipschitz 𝑓 ∶ 𝐵2
𝑇 → ℝ s.t. 𝑂𝑃𝑇 = 𝑓(0) =

0 and executing GD from 𝑥1 = 0 with 𝜂𝑡 = 𝑐/ 𝑡 yields:

𝑓 𝑥𝑡+1 ≥ 𝑓 𝑥𝑡 +
1

32 𝑇(𝑇−𝑡)
for 𝑡 < 𝑇. (Monotonic increase.)

Remark: It is possible to make the function independent of 𝑇 by working with a function from ℓ2 → ℝ.

Main Result 1: lower bound, Lipschitz case.

Theorem: Fix 𝑇 ∈ ℕ. Then ∃ 1-Lipschitz 𝑓 ∶ 𝐵2
𝑇 → ℝ s.t. 𝑂𝑃𝑇 = 𝑓(0) =

0 and executing GD from 𝑥1 = 0 with 𝜂𝑡 = 𝑐/ 𝑡 yields:

𝑓 𝑥𝑡+1 ≥ 𝑓 𝑥𝑡 +
1

32 𝑇(𝑇−𝑡)
for 𝑡 < 𝑇. (Monotonic increase.)

Thus, 𝑓 𝑥𝑇 − 𝑂𝑃𝑇 ≥
log 𝑇

32 𝑇
. (Suboptimal convergence.)

Remark: It is possible to make the function independent of 𝑇 by working with a function from ℓ2 → ℝ.

Main Result 1: lower bound, Lipschitz case.

Theorem: Fix 𝑇 ∈ ℕ. Then ∃ 1-Lipschitz 𝑓 ∶ 𝐵2
𝑇 → ℝ s.t. 𝑂𝑃𝑇 = 𝑓(0) =

0 and executing GD from 𝑥1 = 0 with 𝜂𝑡 = 𝑐/ 𝑡 yields:

𝑓 𝑥𝑡+1 ≥ 𝑓 𝑥𝑡 +
1

32 𝑇(𝑇−𝑡)
for 𝑡 < 𝑇. (Monotonic increase.)

Thus, 𝑓 𝑥𝑇 − 𝑂𝑃𝑇 ≥
log 𝑇

32 𝑇
. (Suboptimal convergence.)

Remark: It is possible to make the function independent of 𝑇 by working with a function from ℓ2 → ℝ.

1. We use 𝜂𝑡 = 𝑐/ 𝑡 because it is only choice of step size that gives the optimal 𝑂 1/ 𝑡 convergence rate.

Main Result 1: lower bound, Lipschitz case.

Theorem: Fix 𝑇 ∈ ℕ. Then ∃ 1-Lipschitz 𝑓 ∶ 𝐵2
𝑇 → ℝ s.t. 𝑂𝑃𝑇 = 𝑓(0) =

0 and executing GD from 𝑥1 = 0 with 𝜂𝑡 = 𝑐/ 𝑡 yields:

𝑓 𝑥𝑡+1 ≥ 𝑓 𝑥𝑡 +
1

32 𝑇(𝑇−𝑡)
for 𝑡 < 𝑇. (Monotonic increase.)

Thus, 𝑓 𝑥𝑇 − 𝑂𝑃𝑇 ≥
log 𝑇

32 𝑇
. (Suboptimal convergence.)

Remark: It is possible to make the function independent of 𝑇 by working with a function from ℓ2 → ℝ.

1. We use 𝜂𝑡 = 𝑐/ 𝑡 because it is only choice of step size that gives the optimal 𝑂 1/ 𝑡 convergence rate.

2. If 𝑇 is known ahead of time, other step sizes can be used [Jain-Nagaraj-Netrapalli ’19].

Main Result 1: lower bound, Lipschitz case.

Iteration

E
rr

o
r

𝑓 𝑥𝑡 − 𝑂𝑃𝑇

ൗln 1000
19 1000 Python simulation of GD for this 𝑓.

𝑇 consecutive iterations of
increase!

At step 𝑇, error is Ω ൗ
log(𝑇)

𝑇
.

Fix 𝑇 = 1000.

Stochastic Gradient Descent: definition.

Input: 𝑋 ⊂ 𝑅𝑛, 𝑥1 ∈ 𝑅𝑛, 𝜂1, 𝜂2, …
For 𝑡 = 1,… , 𝑇, do:

• Query the gradient oracle to obtain ෝ𝒈𝐭
• 𝑦𝑡+1 ← 𝑥𝑡 − 𝜂𝑡 ො𝑔t
• 𝑥𝑡+1 ← Π𝑋 (𝑦𝑡+1)

Endfor

Stochastic Gradient Descent: definition.

𝔼 ො𝑔𝑡 𝑥1, … , 𝑥𝑡] ∈ 𝜕𝑓 𝑥𝑡 .

Assumptions:

∥ ො𝑔𝑡 ∥ is a.s. bounded.

Remark: Can relax bounded noise
assumption to a sub-gaussian noise
assumption.

Input: 𝑋 ⊂ 𝑅𝑛, 𝑥1 ∈ 𝑅𝑛, 𝜂1, 𝜂2, …
For 𝑡 = 1,… , 𝑇, do:

• Query the gradient oracle to obtain ෝ𝒈𝐭
• 𝑦𝑡+1 ← 𝑥𝑡 − 𝜂𝑡 ො𝑔t
• 𝑥𝑡+1 ← Π𝑋 (𝑦𝑡+1)

Endfor

Stochastic Gradient Descent: definition.

𝔼 ො𝑔𝑡 𝑥1, … , 𝑥𝑡] ∈ 𝜕𝑓 𝑥𝑡 .

Assumptions:

∥ ො𝑔𝑡 ∥ is a.s. bounded.

𝑓 𝑥𝑇 − 𝑂𝑃𝑇 is now a random quantity.
Remark: Can relax bounded noise
assumption to a sub-gaussian noise
assumption.

Input: 𝑋 ⊂ 𝑅𝑛, 𝑥1 ∈ 𝑅𝑛, 𝜂1, 𝜂2, …
For 𝑡 = 1,… , 𝑇, do:

• Query the gradient oracle to obtain ෝ𝒈𝐭
• 𝑦𝑡+1 ← 𝑥𝑡 − 𝜂𝑡 ො𝑔t
• 𝑥𝑡+1 ← Π𝑋 (𝑦𝑡+1)

Endfor

Stochastic Gradient Descent: definition.

𝔼 ො𝑔𝑡 𝑥1, … , 𝑥𝑡] ∈ 𝜕𝑓 𝑥𝑡 .

Assumptions:

∥ ො𝑔𝑡 ∥ is a.s. bounded.

𝑓 𝑥𝑇 − 𝑂𝑃𝑇 is now a random quantity.

[Shamir-Zhang ‘12]: 𝔼 𝑓 𝑥𝑇 − 𝑂𝑃𝑇 ≤ 𝒪
log 𝑇

𝑇

Remark: Can relax bounded noise
assumption to a sub-gaussian noise
assumption.

Input: 𝑋 ⊂ 𝑅𝑛, 𝑥1 ∈ 𝑅𝑛, 𝜂1, 𝜂2, …
For 𝑡 = 1,… , 𝑇, do:

• Query the gradient oracle to obtain ෝ𝒈𝐭
• 𝑦𝑡+1 ← 𝑥𝑡 − 𝜂𝑡 ො𝑔t
• 𝑥𝑡+1 ← Π𝑋 (𝑦𝑡+1)

Endfor

Stochastic Gradient Descent: definition.

𝔼 ො𝑔𝑡 𝑥1, … , 𝑥𝑡] ∈ 𝜕𝑓 𝑥𝑡 .

Assumptions:

∥ ො𝑔𝑡 ∥ is a.s. bounded.

𝑓 𝑥𝑇 − 𝑂𝑃𝑇 is now a random quantity.

[Shamir-Zhang ‘12]: 𝔼 𝑓 𝑥𝑇 − 𝑂𝑃𝑇 ≤ 𝒪
log 𝑇

𝑇

Our lower bound shows this is tight, in expectation.

Remark: Can relax bounded noise
assumption to a sub-gaussian noise
assumption.

Input: 𝑋 ⊂ 𝑅𝑛, 𝑥1 ∈ 𝑅𝑛, 𝜂1, 𝜂2, …
For 𝑡 = 1,… , 𝑇, do:

• Query the gradient oracle to obtain ෝ𝒈𝐭
• 𝑦𝑡+1 ← 𝑥𝑡 − 𝜂𝑡 ො𝑔t
• 𝑥𝑡+1 ← Π𝑋 (𝑦𝑡+1)

Endfor

Main Question 2: high probability bounds?

“Another issue is obtaining a bound which holds with probability 𝟏 − 𝜹 and
logarithmic dependence on 𝟏/𝜹. An extra $20 will be awarded for proving a
tight bound on the suboptimality of [the last iterate] which holds in high
probability.”

Shamir’s Open Question [COLT ’12]:

Main Result 2: high probability upper bound, Lipschitz case.

Theorem: Let 𝑓 ∶ 𝑋 → ℝ be convex and 1-Lipschitz with 𝑑𝑖𝑎𝑚 𝑋 bounded.

Main Result 2: high probability upper bound, Lipschitz case.

Theorem: Let 𝑓 ∶ 𝑋 → ℝ be convex and 1-Lipschitz with 𝑑𝑖𝑎𝑚 𝑋 bounded.
Let the stochastic gradient oracle return ො𝑔t such that

𝔼 ො𝑔𝑡 𝑥1, … , 𝑥𝑡] ∈ 𝜕𝑓 𝑥𝑡 and ‖ ො𝑔𝑡‖ is a.s. bounded.

Main Result 2: high probability upper bound, Lipschitz case.

Theorem: Let 𝑓 ∶ 𝑋 → ℝ be convex and 1-Lipschitz with 𝑑𝑖𝑎𝑚 𝑋 bounded.
Let the stochastic gradient oracle return ො𝑔t such that

𝔼 ො𝑔𝑡 𝑥1, … , 𝑥𝑡] ∈ 𝜕𝑓 𝑥𝑡 and ‖ ො𝑔𝑡‖ is a.s. bounded.
Then, for every 𝛿 ∈ 0,1 :

𝑓 𝑥𝑇 − 𝑂𝑃𝑇 ≤ 𝑂
log(𝑇)⋅log(1/𝛿)

𝑇
w.p. ≥ 1 − 𝛿.

Remark: It is not clear whether the dependence of the upper bound on log (Τ1 𝛿) is completely tight.

Main Result 2: high probability upper bound, Lipschitz case.

Theorem: Let 𝑓 ∶ 𝑋 → ℝ be convex and 1-Lipschitz with 𝑑𝑖𝑎𝑚 𝑋 bounded.
Let the stochastic gradient oracle return ො𝑔t such that

𝔼 ො𝑔𝑡 𝑥1, … , 𝑥𝑡] ∈ 𝜕𝑓 𝑥𝑡 and ‖ ො𝑔𝑡‖ is a.s. bounded.
Then, for every 𝛿 ∈ 0,1 :

𝑓 𝑥𝑇 − 𝑂𝑃𝑇 ≤ 𝑂
log(𝑇)⋅log(1/𝛿)

𝑇
w.p. ≥ 1 − 𝛿.

Uses a generalization of Freedman’s inequality to handle a special class of martingales.

Remark: It is not clear whether the dependence of the upper bound on log (Τ1 𝛿) is completely tight.

The main tool: a generalization of Freedman’s inequality.

Generalized Freedman Inequality: a martingale concentration
inequality useful when the variance is bounded by the martingale itself.

The Generalized Freedman Inequality is a key tool in several high probability bounds (last iterate, suffix averaging, …).

The main tool: a generalization of Freedman’s inequality.

Theorem [HLPR2018]: Let 𝐷1, 𝐷2, … be the increments of a martingale.

Generalized Freedman Inequality: a martingale concentration
inequality useful when the variance is bounded by the martingale itself.

The Generalized Freedman Inequality is a key tool in several high probability bounds (last iterate, suffix averaging, …).

The main tool: a generalization of Freedman’s inequality.

Theorem [HLPR2018]: Let 𝐷1, 𝐷2, … be the increments of a martingale.
Suppose, whp:

σ𝑖=1
𝑇 𝐷𝑖

2 ≤ 𝛼2 + 𝛼σ𝑖=1
𝑇 𝐷𝑖 . The martingaleTotal conditional variance

Generalized Freedman Inequality: a martingale concentration
inequality useful when the variance is bounded by the martingale itself.

The Generalized Freedman Inequality is a key tool in several high probability bounds (last iterate, suffix averaging, …).

The main tool: a generalization of Freedman’s inequality.

Theorem [HLPR2018]: Let 𝐷1, 𝐷2, … be the increments of a martingale.
Suppose, whp:

σ𝑖=1
𝑇 𝐷𝑖

2 ≤ 𝛼2 + 𝛼σ𝑖=1
𝑇 𝐷𝑖 .

Then, with high probability
σ𝑖=1
𝑇 𝐷𝑖 ≤ 𝛼.

The martingaleTotal conditional variance

The martingale

Generalized Freedman Inequality: a martingale concentration
inequality useful when the variance is bounded by the martingale itself.

The Generalized Freedman Inequality is a key tool in several high probability bounds (last iterate, suffix averaging, …).

Lipschitz Functions
Return
Scheme

Deterministic & Expected UB High Probability UB Deterministic LB

Uniform
Averaging

𝑂 1/ 𝑇

[Nemirovski-Yudin ’83]

𝑂 1/ 𝑇

[Azuma]

Ω 1/ 𝑇

[Nemirovski-Yudin ’83]

Last Iterate 𝑂 log 𝑇 / 𝑇

[Shamir-Zhang ’13]
??? ???

Strongly Convex & Lipschitz Functions
Return
Scheme

Deterministic & Expected
UB

High Probability UB Deterministic LB

Uniform
Averaging

𝑂 log(𝑇)/𝑇
[Hazan-Agarwal-Kale ’07]

𝑂 log 𝑇 /𝑇
[Kakade-Tewari ’08]

Ω log(T)/𝑇 (expectation)
[Rakhlin-Shamir-Sridharan ’12]

Epoch-based
Averaging

𝑂 1/𝑇
[Hazan-Kale ’11]

𝑂 log(log𝑇) /𝑇
[Hazan-Kale ’11]

Ω 1/𝑇
[Nemirovski−Yudin ’83]

Suffix
Averaging

𝑂 1/𝑇
[Rakhlin-Shamir-Sridharan ’12]

𝑂 log(logT)/𝑇
[Rakhlin-Shamir-Sridharan ’12]

Ω 1/𝑇
[Nemirovski−Yudin ’83]

Last Iterate 𝑂 log 𝑇 /𝑇
[Shamir-Zhang ’13]

??? ???

Lipschitz Functions
Return
Scheme

Deterministic & Expected UB High Probability UB Deterministic LB

Uniform
Averaging

𝑂 1/ 𝑇

[Nemirovski-Yudin ’83]

𝑂 1/ 𝑇

[Azuma]

Ω 1/ 𝑇

[Nemirovski-Yudin ’83]

Last Iterate 𝑂 log 𝑇 / 𝑇

[Shamir-Zhang ’13]
??? ???

Strongly Convex & Lipschitz Functions
Return
Scheme

Deterministic & Expected
UB

High Probability UB Deterministic LB

Uniform
Averaging

𝑂 log(𝑇)/𝑇
[Hazan-Agarwal-Kale ’07]

𝑂 log 𝑇 /𝑇
[Kakade-Tewari ’08]

Ω log(T)/𝑇 (expectation)
[Rakhlin-Shamir-Sridharan ’12]

Epoch-based
Averaging

𝑂 1/𝑇
[Hazan-Kale ’11]

𝑂 log(log𝑇) /𝑇
[Hazan-Kale ’11]

Ω 1/𝑇
[Nemirovski−Yudin ’83]

Suffix
Averaging

𝑂 1/𝑇
[Rakhlin-Shamir-Sridharan ’12]

𝑂 log(logT)/𝑇
[Rakhlin-Shamir-Sridharan ’12]

Ω 1/𝑇
[Nemirovski−Yudin ’83]

Last Iterate 𝑂 log 𝑇 /𝑇
[Shamir-Zhang ’13]

??? ???

Lipschitz Functions
Return
Scheme

Deterministic & Expected UB High Probability UB Deterministic LB

Uniform
Averaging

𝑂 1/ 𝑇

[Nemirovski-Yudin ’83]

𝑂 1/ 𝑇

[Azuma]

Ω 1/ 𝑇

[Nemirovski-Yudin ’83]

Last Iterate 𝑂 log 𝑇 / 𝑇

[Shamir-Zhang ’13]

𝑂 log(𝑇) / 𝑇

[This work]

Ω log(𝑇) / 𝑇

[This work]

Strongly Convex & Lipschitz Functions
Return
Scheme

Deterministic & Expected
UB

High Probability UB Deterministic LB

Uniform
Averaging

𝑂 log(𝑇)/𝑇
[Hazan-Agarwal-Kale ’07]

𝑂 log 𝑇 /𝑇
[Kakade-Tewari ’08]

Ω log(T)/𝑇 (expectation)
[Rakhlin-Shamir-Sridharan ’12]

Epoch-based
Averaging

𝑂 1/𝑇
[Hazan-Kale ’11]

𝑂 log(log𝑇) /𝑇
[Hazan-Kale ’11]

Ω 1/𝑇
[Nemirovski−Yudin ’83]

Suffix
Averaging

𝑂 1/𝑇
[Rakhlin-Shamir-Sridharan ’12]

𝑂 1/𝑇
[This work]

Ω 1/𝑇
[Nemirovski−Yudin ’83]

Last Iterate 𝑂 log 𝑇 /𝑇
[Shamir-Zhang ’13]

𝑂 log(𝑇) /𝑇
[This work]

Ω log(𝑇)/𝑇
[This work]

* dependence on log(1/𝛿) is not completely tight

Thank you!
Questions?

Come see us at poster 168!

