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Non-smooth functions: why average?

Smoothness = iterates are monotonically decreasing in value.

If f is smooth, one can choose 7n; such that f(x;,,) < f(x;) for every t.

Non-smooth functions can change direction rapidly.
It is possible that f(x;+1) > f(x;).

Typically use averaging to get X~
around this issue.
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A basic question: what about the individual iterates?

Shamir’s Open Questions [COLT '12]:

($50) “What is the suboptimality of the last iterate returned by GD?”

($20) “will be awarded for a tight high probability bound on the suboptimality
of [the last iterate].”

We answer both of these questions.
For strongly-convex and Lipschitz functions.

For Lipschitz functions.

Setting for today: Lipschitz and Non-Smooth functions
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Main Question 1: convergence of individual iterates?

[Nesterov-Shikhman "15]: give algorithm where iterates’ values converge to
OPT at the optimal rate.

Motivates another question:
do the individual iterates’ values of GD converge to OPT? If so, at what rate?

> Bestupper bound |Shamir-Zhang "13]: O (lf/gTT) (sub-optimal).

The question we address:

Is () (13?

) the right rate of convergence for the iterates of GD? [Shamir "12]
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Main Result 1: lower bound, Lipschitz case.

Theorem: Fix 7' € N. Then 3 1-Lipschitz [ : B, — Rs.t. OPT = [(0) =
0 and executing GD from x, = 0 with 7, = ¢/+/t yields:

1 .
f(xepq) = fxp) + i fort < T. (Monotonic increase.)

Thus, f (x;) — OPT > ;OZ%/; (Suboptimal convergence.)

1. We use 17, = ¢/+/t because it is only choice of step size that gives the optimal 0(1 /\/f) convergence rate.
2. If T is known ahead of time, other step sizes can be used [Jain-Nagaraj-Netrapalli "19].

RemarKk: It is possible to make the function independent of T by working with a function from £, - R.



Main Result 1: lower bound, Lipschitz case.

0012

oo In 1000/ FixT = 1000.
. 2L Python simulation of GD for this f.
§ oo T consecutive iterations of
- increase!

0004 f(x;) — OPT

2002 At step T, error is () (log(T)/ ﬁ)'

Iteration
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Stochastic Gradient Descent: definition.

Input: X ¢ R",x; € R™, 14,15, ...
Fort=1,..,T, do:
* Query the gradient oracle to obtain g;
* Vis1 < Xt — NGt

* Xep1 < Hx (Vegr)
Endfor

f(x7) — OPT is now a random quantity.

[Shamir-Zhang ‘12]: E[f(x;) — OPT] < O (I(z/gTT)

Our lower bound shows this is tight, in expectation.

Assumptions:

E[g; | xq, ..., x¢] € Of (x¢).
| g, |l is a.s. bounded.

Remark: Can relax bounded noise

assumption to a sub-gaussian noise
assumption.



Main Question 2: high probability bounds?

Shamir’s Open Question [COLT '12]:

“Another issue is obtaining a bound which holds with probability 1 — ¢ and
logarithmic dependence on 1/6. An extra $20 will be awarded for proving a
tight bound on the suboptimality of [the last iterate] which holds in high
probability.”
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Main Result 2: high probability upper bound, Lipschitz case.

Theorem: Let / : X — R be convex and 1-Lipschitz with diam(X) bounded.
Let the stochastic gradient oracle return g, such that

Elg; | xq,...,x; €0df(x;) and ||g;] is a.s. bounded.
Then, for every 6 € (0,1):

f(x7) — OPT < 0 (l"gm}‘;g“/ 5)) wp.=1— 6.

Uses a generalization of Freedman’s inequality to handle a special class of martingales.

Remark: It is not clear whether the dependence of the upper bound on log (1/5) is completely tight.
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The Generalized Freedman Inequality is a key tool in several high probability bounds (last iterate, suffix averaging, ... ).



The main tool: a generalization of Freedman’s inequality.

Generalized Freedman Inequality: a martingale concentration
inequality useful when the is bounded by the martingale itself.

Theorem : Let be the increments of a martingale.



The main tool: a generalization of Freedman’s inequality.

Generalized Freedman Inequality: a martingale concentration
inequality useful when the is bounded by the martingale itself.

Theorem : Let be the increments of a martingale.
Suppose, whp:

Total conditional variance ’lr= 1 Dl2 ’{: 1 Dl] . | The martingale




The main tool: a generalization of Freedman’s inequality.

Generalized Freedman Inequality: a martingale concentration

inequality useful when the is bounded by the martingale itself.
Theorem : Let be the increments of a martingale.
Suppose, whp:

Total conditional variance ’lr=1 Dl2 ’ ’{:1 Dl] . | The martingale

Then, with high probability

- T
The martingale [ =1 Dl]




Lipschitz Functions

Deterministic & Expected UB High Probability UB
Scheme

Uniform 0(1/VT) 0(1/VT) Q(1/VT)
Averaging [Nemirovski-Yudin '83] [Azuma] [Nemirovski-Yudin '83]
0(log(T) /NT) ?77? ?27?

[Shamir-Zhang '13]

Strongly Convex & Lipschitz Functions

Return Deterministic & Expected High Probability UB Deterministic LB
Scheme UB

Uniform O(log(T)/T) O(log(T) /T) Q(log(T)/T) (expectation)

Averaging [Hazan-Agarwal-Kale '07] [Kakade-Tewari '08] [Rakhlin-Shamir-Sridharan "12]

Epoch-based 0(1/T) O(log(logT) /T) Q(1/T)

Averaging [Hazan-Kale "11] [Hazan-Kale "11] [Nemirovski-Yudin '83]

Suffix 0(1/T) O(log(logT)/T) Q(1/T)

Averaging [Rakhlin-Shamir-Sridharan’12] [Rakhlin-Shamir-Sridharan '12] [Nemirovski-Yudin '83]
0(log(T) /T) 277 277

[Shamir-Zhang '13]
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Thank you!
Questions?

Come see us at poster 168!



