Tight Analyses for Non-Smooth Stochastic Gradient Descent

Nick Harvey (UBC)

Chris Liaw (UBC)

Yaniv Plan (UBC)

Sikander Randhawa (UBC)

<u>Definition</u> (Gradient Descent): $x_{t+1} \leftarrow x_t - \eta_t g_t$ where $g_t \in \partial f(x_t)$.

<u>Definition</u> (Gradient Descent): $x_{t+1} \leftarrow x_t - \eta_t g_t$ where $g_t \in \partial f(x_t)$.

There are still basic questions that have yet to be answered.

<u>Definition</u> (Gradient Descent): $x_{t+1} \leftarrow x_t - \eta_t g_t$ where $g_t \in \partial f(x_t)$.

There are still basic questions that have yet to be answered.

Assumption on <i>f</i>	Standard Convergence Rates	
Smooth and Strongly Convex	$f(x_t) - OPT = \mathcal{O}(\exp(-t))$	
Smooth	$f(x_t) - OPT = \mathcal{O}(1/t)$	
Non-Smooth and Strongly Convex	$f\left(\frac{1}{t}\sum_{i=1}^{t}x_i\right) - OPT = \mathcal{O}(\log(t)/t)$	
Non-Smooth and Lipschitz	$f\left(\frac{1}{t}\sum_{i=1}^{t}x_i\right) - OPT = \mathcal{O}(1/\sqrt{t})$	

<u>Definition</u> (Gradient Descent): $x_{t+1} \leftarrow x_t - \eta_t g_t$ where $g_t \in \partial f(x_t)$.

There are still basic questions that have yet to be answered.

Assumption on <i>f</i>	Standard Convergence Rates	
Smooth and Strongly Convex	$f(x_t) - OPT = \mathcal{O}(\exp(-t))$	
Smooth	$f(x_t) - OPT = \mathcal{O}(1/t)$	
Non-Smooth and Strongly Convex	$f\left(\frac{1}{t}\sum_{i=1}^{t}x_i\right) - OPT = O(\log(t)/t)$	We focus on non-smooth
Non-Smooth and Lipschitz	$f\left(\frac{1}{t}\sum_{i=1}^{t}x_i\right) - OPT = \mathcal{O}(1/\sqrt{t})$	functions.

<u>Definition</u> (Gradient Descent): $x_{t+1} \leftarrow x_t - \eta_t g_t$ where $g_t \in \partial f(x_t)$.

There are still basic questions that have yet to be answered.

Assumption on <i>f</i>	Standard Convergence Rates	
Smooth and Strongly Convex	$f(x_t) - OPT = \mathcal{O}(\exp(-t))$	
Smooth	$f(x_t) - OPT = \mathcal{O}(1/t)$	
Non-Smooth and Strongly Convex	$f\left(\frac{1}{t}\sum_{i=1}^{t}x_{i}\right) - OPT = \mathcal{O}(\log(t)/t)$	We focus o non-smoot
Non-Smooth and Lipschitz	$f\left(\frac{1}{t}\sum_{i=1}^{t}x_{i}\right) - OPT = \mathcal{O}(1/\sqrt{t})$	functions.

Standard results in non-smooth setting require averaging of iterates.

<u>Definition</u> (Gradient Descent): $x_{t+1} \leftarrow x_t - \eta_t g_t$ where $g_t \in \partial f(x_t)$.

There are still basic questions that have yet to be answered.

Assumption on <i>f</i>	Standard Convergence Rates	
Smooth and Strongly Convex	$f(x_t) - OPT = \mathcal{O}(\exp(-t))$	
Smooth	$f(x_t) - OPT = \mathcal{O}(1/t)$	
Non-Smooth and Strongly Convex	$f\left(\frac{1}{t}\sum_{i=1}^{t}x_{i}\right) - OPT = \mathcal{O}(\log(t)/t)$	We focus or non-smoot
Non-Smooth and Lipschitz	$f\left(\frac{1}{t}\sum_{i=1}^{t}x_{i}\right) - OPT = \mathcal{O}(1/\sqrt{t})$	functions.

Standard results in non-smooth setting require averaging of iterates.

Averaging is optimal for nonsmooth Lipschitz functions.

<u>Definition</u> (Gradient Descent): $x_{t+1} \leftarrow x_t - \eta_t g_t$ where $g_t \in \partial f(x_t)$.

There are still basic questions that have yet to be answered.

Assumption o	on f	Standard Convergence Rates	
Smooth and Strongly Convex		$f(x_t) - OPT = \mathcal{O}(\exp(-t))$	
Smooth		$f(x_t) - OPT = \mathcal{O}(1/t)$	
Non-Smooth and Strongly Convex		$f\left(\frac{1}{t}\sum_{i=1}^{t}x_{i}\right) - OPT = \mathcal{O}(\log(t)/t)$	We focus or non-smooth
Non-Smooth and Lipschitz	Needs $\eta_t = 1/\sqrt{t}$	$f\left(\frac{1}{t}\sum_{i=1}^{t}x_{i}\right) - OPT = \mathcal{O}(1/\sqrt{t})$	functions.

Standard results in non-smooth settingAveragingrequire averaging of iterates.sm

Averaging is optimal for nonsmooth Lipschitz functions.

Smoothness \Rightarrow iterates are monotonically decreasing in value.

If *f* is smooth, one can choose η_t such that $f(x_{t+1}) \leq f(x_t)$ for every *t*.

Non-smooth functions: why average?

Smoothness \Rightarrow iterates are monotonically decreasing in value.

If *f* is smooth, one can choose η_t such that $f(x_{t+1}) \leq f(x_t)$ for every *t*.

Non-smooth functions can change direction rapidly.

It is possible that $f(x_{t+1}) > f(x_t)$.

Non-smooth functions: why average?

Smoothness \Rightarrow iterates are monotonically decreasing in value.

If *f* is smooth, one can choose η_t such that $f(x_{t+1}) \leq f(x_t)$ for every *t*.

Non-smooth functions can change direction rapidly.

It is possible that $f(x_{t+1}) > f(x_t)$.

Typically use averaging to get around this issue.

Shamir's Open Questions [COLT '12]:

Shamir's Open Questions [COLT '12]:

(\$50) "What is the suboptimality of the last iterate returned by GD?"

Shamir's Open Questions [COLT '12]:

(\$50) "What is the suboptimality of the last iterate returned by GD?"

(\$20) "will be awarded for a tight *high probability* bound on the suboptimality of [the last iterate]."

Shamir's Open Questions [COLT '12]:

(\$50) "What is the suboptimality of the last iterate returned by GD?"

(\$20) "will be awarded for a tight *high probability* bound on the suboptimality of [the last iterate]."

We answer both of these questions.

For strongly-convex and Lipschitz functions.

For Lipschitz functions.

Setting for today: Lipschitz and Non-Smooth functions

[Nesterov-Shikhman '15]: give algorithm where iterates' values converge to OPT at the optimal rate.

[Nesterov-Shikhman '15]: give algorithm where iterates' values converge to OPT at the optimal rate.

Motivates another question:

- do the individual iterates' values of GD converge to OPT? If so, at what rate?

[Nesterov-Shikhman '15]: give algorithm where iterates' values converge to OPT at the optimal rate.

Motivates another question:

- do the individual iterates' values of GD converge to OPT? If so, at what rate?
 - ▶ Best upper bound [Shamir-Zhang '13]: $O\left(\frac{\log T}{\sqrt{T}}\right)$ (sub-optimal).

[Nesterov-Shikhman '15]: give algorithm where iterates' values converge to OPT at the optimal rate.

Motivates another question:

- do the individual iterates' values of GD converge to OPT? If so, at what rate?
 - ▶ Best upper bound [Shamir-Zhang '13]: $O\left(\frac{\log T}{\sqrt{T}}\right)$ (sub-optimal).

The question we address:

• Is $O\left(\frac{\log T}{\sqrt{T}}\right)$ the right rate of convergence for the iterates of GD? [Shamir '12]

<u>Theorem</u>: Fix $T \in \mathbb{N}$.

<u>Theorem</u>: Fix $T \in \mathbb{N}$. Then \exists 1-Lipschitz $f : B_2^T \to \mathbb{R}$ s.t. OPT = f(0) = 0 and executing GD from $x_1 = 0$ with $\eta_t = c/\sqrt{t}$ yields:

<u>Theorem</u>: Fix $T \in \mathbb{N}$. Then \exists 1-Lipschitz $f : B_2^T \to \mathbb{R}$ s.t. OPT = f(0) = 0 and executing GD from $x_1 = 0$ with $\eta_t = c/\sqrt{t}$ yields: $f(x_{t+1}) \ge f(x_t) + \frac{1}{32\sqrt{T}(T-t)}$ for t < T. (Monotonic increase.)

Theorem: Fix $T \in \mathbb{N}$. Then \exists 1-Lipschitz $f : B_2^T \to \mathbb{R}$ s.t. OPT = f(0) =0 and executing GD from $x_1 = 0$ with $\eta_t = c/\sqrt{t}$ yields: $f(x_{t+1}) \ge f(x_t) + \frac{1}{32\sqrt{T}(T-t)}$ for t < T. (Monotonic increase.)Thus, $f(x_T) - OPT \ge \frac{\log T}{32\sqrt{T}}$. (Suboptimal convergence.)

Theorem: Fix $T \in \mathbb{N}$. Then \exists 1-Lipschitz $f : B_2^T \to \mathbb{R}$ s.t. OPT = f(0) =0 and executing GD from $x_1 = 0$ with $\eta_t = c/\sqrt{t}$ yields: $f(x_{t+1}) \ge f(x_t) + \frac{1}{32\sqrt{T}(T-t)}$ for t < T. (Monotonic increase.)Thus, $f(x_T) - OPT \ge \frac{\log T}{32\sqrt{T}}$.(Suboptimal convergence.)

1. We use $\eta_t = c/\sqrt{t}$ because it is only choice of step size that gives the optimal $O(1/\sqrt{t})$ convergence rate.

Theorem: Fix $T \in \mathbb{N}$. Then \exists 1-Lipschitz $f : B_2^T \to \mathbb{R}$ s.t. OPT = f(0) =0 and executing GD from $x_1 = 0$ with $\eta_t = c/\sqrt{t}$ yields: $f(x_{t+1}) \ge f(x_t) + \frac{1}{32\sqrt{T}(T-t)}$ for t < T. (Monotonic increase.)Thus, $f(x_T) - OPT \ge \frac{\log T}{32\sqrt{T}}$.(Suboptimal convergence.)

1. We use $\eta_t = c/\sqrt{t}$ because it is only choice of step size that gives the optimal $O(1/\sqrt{t})$ convergence rate. 2. If *T* is known ahead of time, other step sizes can be used [Jain-Nagaraj-Netrapalli '19].

Fix T = 1000.

Python simulation of GD for this f.

T consecutive iterations of **increase**!

At step *T*, error is
$$\Omega\left(\frac{\log(T)}{\sqrt{T}}\right)$$
.

Input: *X* ⊂ \mathbb{R}^{n} , $x_{1} \in \mathbb{R}^{n}$, η_{1} , η_{2} , ... **For** *t* = 1, ..., *T*, **do:**

- Query the gradient oracle to obtain \hat{g}_t
- $y_{t+1} \leftarrow x_t \eta_t \hat{g}_t$
- $x_{t+1} \leftarrow \Pi_X (y_{t+1})$

Endfor

Input: *X* ⊂ \mathbb{R}^{n} , $x_{1} \in \mathbb{R}^{n}$, η_{1} , η_{2} , ... **For** *t* = 1, ..., *T*, **do:**

- Query the gradient oracle to obtain \hat{g}_t
- $y_{t+1} \leftarrow x_t \eta_t \hat{g}_t$
- $x_{t+1} \leftarrow \Pi_X (y_{t+1})$

Endfor

Assumptions:

 $\mathbb{E}[\hat{g}_t \mid x_1, \dots, x_t] \in \partial f(x_t).$ $\parallel \hat{g}_t \parallel \text{ is a.s. bounded.}$

<u>Remark</u>: Can relax bounded noise assumption to a sub-gaussian noise assumption.

Input: *X* ⊂ \mathbb{R}^{n} , $x_{1} \in \mathbb{R}^{n}$, η_{1} , η_{2} , ... **For** *t* = 1, ..., *T*, **do:**

- Query the gradient oracle to obtain \hat{g}_t
- $y_{t+1} \leftarrow x_t \eta_t \hat{g}_t$
- $x_{t+1} \leftarrow \Pi_X (y_{t+1})$

Endfor

 $f(x_T) - OPT$ is now a random quantity.

Assumptions:

 $\mathbb{E}[\hat{g}_t \mid x_1, \dots, x_t] \in \partial f(x_t).$ $\parallel \hat{g}_t \parallel \text{ is a.s. bounded.}$

<u>Remark:</u> Can relax bounded noise assumption to a sub-gaussian noise assumption.

Input: $X \subset \mathbb{R}^{n}, x_{1} \in \mathbb{R}^{n}, \eta_{1}, \eta_{2}, ...$ **For** t = 1, ..., T, **do:**

- Query the gradient oracle to obtain \hat{g}_t
- $y_{t+1} \leftarrow x_t \eta_t \hat{g}_t$
- $x_{t+1} \leftarrow \prod_X (y_{t+1})$ Endfor

 $f(x_T) - OPT$ is now a random quantity.

[Shamir-Zhang '12]: $\mathbb{E}[f(x_T) - OPT] \le \mathcal{O}\left(\frac{\log T}{\sqrt{T}}\right)$

Assumptions:

 $\mathbb{E}[\hat{g}_t \mid x_1, \dots, x_t] \in \partial f(x_t).$ $\parallel \hat{g}_t \parallel \text{ is a.s. bounded.}$

<u>Remark:</u> Can relax bounded noise assumption to a sub-gaussian noise assumption.

Input: $X \subset \mathbb{R}^{n}, x_{1} \in \mathbb{R}^{n}, \eta_{1}, \eta_{2}, ...$ **For** t = 1, ..., T, **do:**

- Query the gradient oracle to obtain \hat{g}_t
- $y_{t+1} \leftarrow x_t \eta_t \hat{g}_t$
- $x_{t+1} \leftarrow \Pi_X(y_{t+1})$

Endfor

 $f(x_T) - OPT$ is now a random quantity.

[Shamir-Zhang '12]: $\mathbb{E}[f(x_T) - OPT] \le \mathcal{O}\left(\frac{\log T}{\sqrt{T}}\right)$

Our lower bound shows this is tight, *in expectation*.

Assumptions:

 $\mathbb{E}[\hat{g}_t \mid x_1, \dots, x_t] \in \partial f(x_t).$ $\parallel \hat{g}_t \parallel \text{ is a.s. bounded.}$

<u>Remark:</u> Can relax bounded noise assumption to a sub-gaussian noise assumption.

Main Question 2: *high probability bounds?*

Shamir's Open Question [COLT '12]:

"Another issue is obtaining a bound which holds with probability $1 - \delta$ and **logarithmic dependence on 1/\delta**. An extra **\$20** will be awarded for proving a tight bound on the suboptimality of **[the last iterate]** which holds in **high probability**."

<u>Theorem</u>: Let $f : X \to \mathbb{R}$ be convex and 1-Lipschitz with diam(X) bounded.

<u>Theorem</u>: Let $f : X \to \mathbb{R}$ be convex and 1-Lipschitz with diam(X) bounded. Let the stochastic gradient oracle return \hat{g}_t such that $\mathbb{E}[\hat{g}_t \mid x_1, \dots, x_t] \in \partial f(x_t)$ and $\|\hat{g}_t\|$ is a.s. bounded.

<u>Theorem</u>: Let $f : X \to \mathbb{R}$ be convex and 1-Lipschitz with diam(X) bounded. Let the stochastic gradient oracle return \hat{g}_t such that $\mathbb{E}[\hat{g}_t \mid x_1, \dots, x_t] \in \partial f(x_t)$ and $\|\hat{g}_t\|$ is a.s. bounded. Then, for every $\delta \in (0,1)$: $f(x_T) - OPT \le O\left(\frac{\log(T) \cdot \log(1/\delta)}{\sqrt{T}}\right)$ w.p. $\ge 1 - \delta$.

<u>**Remark**</u>: It is not clear whether the dependence of the upper bound on log $\binom{1}{\delta}$ is completely tight.

<u>Theorem</u>: Let $f : X \to \mathbb{R}$ be convex and 1-Lipschitz with diam(X) bounded. Let the stochastic gradient oracle return \hat{g}_t such that $\mathbb{E}[\hat{g}_t \mid x_1, \dots, x_t] \in \partial f(x_t)$ and $\|\hat{g}_t\|$ is a.s. bounded. Then, for every $\delta \in (0,1)$: $f(x_T) - OPT \leq O\left(\frac{\log(T) \cdot \log(1/\delta)}{\sqrt{T}}\right)$ w.p. $\geq 1 - \delta$.

Uses a generalization of Freedman's inequality to handle a special class of martingales.

<u>Remark</u>: It is not clear whether the dependence of the upper bound on log $\binom{1}{\delta}$ is completely tight.

<u>Generalized Freedman Inequality:</u> a martingale concentration inequality useful when the variance is bounded by the martingale itself.

The Generalized Freedman Inequality is a key tool in several high probability bounds (last iterate, suffix averaging, ...).

<u>Generalized Freedman Inequality:</u> a martingale concentration inequality useful when the variance is bounded by the martingale itself.

<u>Theorem</u> [HLPR2018]: Let $D_1, D_2, ...$ be the increments of a martingale.

The Generalized Freedman Inequality is a key tool in several high probability bounds (last iterate, suffix averaging, ...).

<u>Generalized Freedman Inequality:</u> a martingale concentration inequality useful when the variance is bounded by the martingale itself.

<u>**Theorem**</u> [HLPR2018]: Let $D_1, D_2, ...$ be the increments of a martingale. Suppose, whp:

Total conditional variance

$$\sum_{i=1}^{T} D_i^2 \leq \left(\alpha^2 + \alpha \sum_{i=1}^{T} D_i\right).$$
 The martin

Igale

The Generalized Freedman Inequality is a key tool in several high probability bounds (last iterate, suffix averaging, ...).

<u>Generalized Freedman Inequality:</u> a martingale concentration inequality useful when the variance is bounded by the martingale itself.

<u>**Theorem**</u> [HLPR2018]: Let $D_1, D_2, ...$ be the increments of a martingale. Suppose, whp:

Total conditional variance $\sum_{i=1}^{T} D_i^2 \leq (\alpha^2 + \alpha \sum_{i=1}^{T} D_i).$

Then, with high probability

The martingale $\left[\sum_{i=1}^{T} D_i\right] \leq \alpha$.

The Generalized Freedman Inequality is a key tool in several high probability bounds (last iterate, suffix averaging, ...).

The martingale

Lipschitz Functions

Return Scheme	Deterministic & Expected UB	High Probability UB	Deterministic LB
Uniform Averaging	$O(1/\sqrt{T})$ [Nemirovski-Yudin '83]	$O(1/\sqrt{T})$ [Azuma]	$\Omega(1/\sqrt{T})$ [Nemirovski-Yudin '83]
Last Iterate	$O(\log(T) / \sqrt{T})$ [Shamir-Zhang '13]	???	???

Strongly Convex & Lipschitz Functions

Return Scheme	Deterministic & Expected UB	High Probability UB	Deterministic LB
Uniform	<i>O</i> (log(<i>T</i>)/ <i>T</i>)	<i>O</i> (log(<i>T</i>) / <i>T</i>)	$\Omega(\log(T)/T)$ (expectation)
Averaging	[Hazan-Agarwal-Kale '07]	[Kakade-Tewari '08]	[Rakhlin-Shamir-Sridharan '12]
Epoch-based	<i>O</i> (1/ <i>T</i>)	O(log(logT)/T)	Ω(1/T)
Averaging	[Hazan-Kale '11]	[Hazan-Kale '11]	[Nemirovski–Yudin '83]
Suffix	O(1/T) [Rakhlin-Shamir-Sridharan '12]	<i>O</i> (log(log T)/ <i>T</i>)	Ω(1/T)
Averaging		[Rakhlin-Shamir-Sridharan '12]	[Nemirovski–Yudin '83]
Last Iterate	$O(\log(T) / T)$ [Shamir-Zhang '13]	???	???

Lipschitz Functions

Return Scheme	Deterministic & Expected UB	High Probability UB	Deterministic LB
Uniform Averaging	$O(1/\sqrt{T})$ [Nemirovski-Yudin '83] Tig	$\frac{O(1/\sqrt{T})}{[Azuma]}$ Tig	$\sum_{i=1}^{n} \frac{\Omega(1/\sqrt{T})}{[Nemirovski-Yudin '83]}$
Last Iterate	$O(\log(T) / \sqrt{T})$ [Shamir-Zhang '13]	???	???

Strongly Convex & Lipschitz Functions

Return Scheme	Deterministic & Expected UB	High Probability UB	Deterministic LB
Uniform Averaging	$O(\log(T)/T)$ [Hazan-Agarwal-Kale '07]	Sht O(log(T)/T) Tig [Kakade-Tewari '08]	[log(T)/T) (expectation) [Rakhlin-Shamir-Sridharan '12]
Epoch-based Averaging	O(1/T) [Hazan-Kale '11] Tig	$\mathbf{ght} \stackrel{O(\log(\log T)/T)}{[\text{Hazan-Kale '11}]} \mathbf{Ti}_{\mathbf{z}}$	$\mathbf{Sh}_{[\text{Nemirovski-Yudin '83]}}^{\Omega(1/T)}$
Suffix Averaging	O(1/T) [Rakhlin-Shamir-Sridharan 12]	Rakhlin-Shamir-Sridharan '12]	$\Omega(1/T)$ [Nemirovski–Yudin '83]
Last Iterate	$O(\log(T) / T)$ [Shamir-Zhang '13]	???	???

Lipschitz Functions

Return Scheme	Deterministic & Expected UB	High Probability UB	Deterministic LB
Uniform Averaging	$O(1/\sqrt{T})$ [Nemirovski-Yudin '83] Tig	$\sum_{[Azuma]} O(1/\sqrt{T})$	$\frac{\Omega(1/\sqrt{T})}{[Nemirovski-Yudin '83]}$
Last Iterate	$O(\log(T)/\sqrt{T})$ [Shamir-Zhang'13] Tig	ht* $\frac{O(\log(T)/\sqrt{T})}{[This work]}$ Ti	$\operatorname{ght}^{\operatorname{n}(\log(T)/\sqrt{T})}_{[\text{This work}]}$

Strongly Convex & Lipschitz Functions

Return Scheme	Deterministic & Expected UB	High Probability UB	Deterministic LB
Uniform Averaging	$O(\log(T)/T)$ [Hazan-Agarwal-Kale '07]	$\operatorname{Sht}_{[Kakade-Tewari '08]}^{O(\log(T) / T)}$	Clog(T)/T) (expectation) [Rakhlin-Shamir-Sridharan '12]
Epoch-based Averaging	O(1/T) [Hazan-Kale '11] Tig	$\mathbf{pht} = \begin{bmatrix} O(\log(\log T)/T) \\ [Hazan-Kale'11] \end{bmatrix}$	$\Omega(1/T)$ [Nemirovski–Yudin '83]
Suffix Averaging	O(1/T) [Rakhlin-Shamir-Sridharan 12]	sht O(1/T) Tig	$\mathbf{ght} \Omega(1/T)$ [Nemirovski–Yudin '83]
Last Iterate	$O(\log(T)/T)$ [Shamir-Zhang '13]	$ht^* \frac{O(\log(T)/T)}{[This work]}$ Ti	$\begin{array}{c} \textbf{ght}^* & \Omega(\log(T)/T) \\ \textbf{[This work]} \end{array}$

Thank you! Questions?

Come see us at poster 168!