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Abstract

We consider stochastic gradient descent algorithms for minimizing a non-smooth,
strongly-convex function. Several forms of this algorithm, including suffix averag-
ing, are known to achieve the optimal O(1/T ) convergence rate in expectation. We
consider a simple, non-uniform averaging strategy of Lacoste-Julien et al. (2011)
and prove that it achieves the optimal O(1/T ) convergence rate with high proba-
bility. Our proof uses a recently developed generalization of Freedman’s inequality.
Finally, we compare several of these algorithms experimentally and show that this
non-uniform averaging strategy outperforms many standard techniques, and with
smaller variance.

1 Introduction

Stochastic gradient descent (SGD) is perhaps the single most important algorithm for minimizing
strongly convex loss functions. Its popularity is a combined consequence of the simplicity of
its statement and its effectiveness in both theory and practice. Gradient descent is an iterative
optimization procedure, where the current solution is updated by taking a step in the opposite
direction of the current gradient. In the case of using SGD for Empirical Risk Minimization, the
gradient of the loss function is often too expensive to compute. So instead, we select a data point
uniformly at random and compute the gradient of the loss function using only this single data point.
The resulting value is not necessarily a true gradient, but it is in expectation. When it is time to output
a solution, the standard textbook choices are either to report the last iterate, or the average of iterates
so far.

Surprisingly, there are situations where these textbook output strategies have provably sub-optimal
performance, even though the algorithm is so popular. Here, by performance we are referring to the
rate at which the loss of the output convergences to the true minimum value of the loss function.
Consider the setting where the loss function is strongly convex, but not smooth (for example, the
regularized SVM minimization problem). In the absence of smoothness, there is no guarantee that the
value of the individual iterates of SGD improve over time. In fact, Harvey et al. [2018] construct an
example where the value of the iterates increases over time. Moreover, they show that the convergence
rate of the individual iterates of even deterministic gradient descent is Ω(log(T )/T ), whereas the
optimal rate is Θ(1/T ) for a first-order algorithm. Rakhlin et al. [2012] show that returning the



average of all of the iterates so far is also sub-optimal by a log(T ) factor (this lower bound holds in
expectation).

As a result, researchers have developed several algorithms which achieve the optimal O(1/T ) rate in
expectation, some of which are simpler than others. Because the popularity of SGD is largely due
to its simplicity, a straightforward variant of the algorithm attaining the optimal rate is significantly
more desirable than some other, more complex procedure. The non-uniform averaging strategy from
Lacoste-Julien et al. [2012] and the suffix-averaging strategy from Rakhlin et al. [2012] are likely
the simplest and closest in resemblance to textbook statements of SGD. Each method runs standard
SGD until output time. In Lacoste-Julien et al. [2012], a non-uniform average over all the iterates
(with iterate i given a weight proportional to i) is returned whereas in Rakhlin et al. [2012], a uniform
average over the last half of the iterates (referred to as the suffix-average) is returned. There still
remains another important issue to resolve though, even provided the existence of simple algorithms
which obtain the optimal expected O(1/T ) rate.

How many random trials are needed for suffix averaging or the non-uniform averaging strategies
to actually achieve the O(1/T ) rate? (Recall that the error is random). Usual expositions of SGD
provide bounds that hold in expectation. This is a weak guarantee because it does not preclude
the error of the algorithm from having large variance. Users of SGD want to be confident that the
output of a single trial of the algorithm is extremely likely to provide the guaranteed convergence
rate. In other words, they would prefer bounds that hold with high probability. Moreover, it is often
impossible to run many trials of SGD and select the best one. For example, considering the Empirical
Risk Minimization setting, if we are dealing with many high dimensional data points, it can be
prohibitively expensive to even evaluate the loss function.

It was shown recently in Harvey et al. [2018], that suffix-averaging obtains a convergence rate of
O(log(1/δ)/T ) with probability at least 1− δ. However, implementing suffix-averaging when the
time horizon is not known ahead of time (for example, stopping SGD when the norm of the gradient is
small) requires a modicum of care. Non uniform averaging could be an equally attractive alternative
if its convergence rate held with high probability.

Main theoretical results. We show that running standard SGD and returning the very simple
non-uniform average of the iterates from Lacoste-Julien et al. [2012] has error at mostO(log(1/δ)/T )
with probability 1 − δ. The analysis is simple and exposes a martingale which satisfies a special
recursive property which was also observed in Harvey et al. [2018]. It is intriguing that this recursive
property arises in multiple settings when analyzing SGD. Moreover, we show a matching lower
bound of Ω(log(1/δ)/T ) with probability at least δ. The analysis uses the simple univariate function
1
2x

2. Thus, we have a tight high probability analysis of a very simple output strategy for SGD which
attains the optimal rate.

Experimental results. In addition, we run detailed experiments for various return schemes of
SGD for SVMs on synthetic data and real-world datasets. Our experimental results strongly suggest
that the suffix averaging and non-uniform averaging schemes should be preferred over the final iterate
and uniform averaging schemes.

1.1 Related Work

There are a number of other algorithms which obtain the optimal O(1/T ) convergence rate amongst
first-order methods for minimizing a non-smooth, strongly-convex function. Hazan and Kale [2014]
proved that a variant of SGD, called Epoch-GD obtains the optimal rate. Here, they partition the
total time T into exponentially growing epochs. Within each epoch, they run standard SGD (with an
appropriate step size) and after the end of each epoch, they reset the current point to the average of
the iterates in the previous epoch.

Later, Rakhlin et al. [2012] and Lacoste-Julien et al. [2012] independently discovered simpler
algorithms that also achieve the optimal O(1/T ) rate. In fact, both algorithms run standard SGD
with the standard step size proportional to 1/t; the only difference between the two algorithms is the
return value of the algorithm. In Rakhlin et al. [2012], they show that suffix averaging, where one
returns the last α fraction of the iterates (for some constant α > 0), achieves the optimal rate. On the
other hand, Lacoste-Julien et al. [2012] prove that a certain non-uniform average (see Algorithm 1)
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of the iterates also achieves the optimal rate. One advantage of non-uniform averaging is that the
iterates can be easily computed on the fly.

Recently, Nesterov and Shikhman [2015] have devised a modification of gradient descent for which
the error of the last iterate converges at the optimal rate. Even more recently, Jain et al. [2019] showed
that even for unmodified gradient descent the last iterate can be made to achieve the optimal rate, if
the time horizon is known beforehand, and if the step-size is chosen carefully using the time horizon.
Interestingly, they also show that knowing (or having a bound on) the time horizon is necessary for
all the individual iterates to achieve the optimal rate.

High-probability upper bounds. All the results stated above hold only in expectation and do not
rule out the possibility that the return value has high variance. Moreover, it can be expensive to
compute the objective value of a point. Hence, it is desirable to have a high-probability upper bound
on the return value.

To assist in this task, Harvey et al. [2018] recently developed a generalization of Freedman’s Inequality.
Using this, they show that if one runs SGD with the standard 1/t step sizes, then the last iterate and the
suffix average schemes achieve error O(log(T )/T ), and O(1/T ), respectively, with high probability.
Using similar methods, Jain et al. [2019] prove that the last iterate of SGD with carefully chosen step
sizes achieves an error of O(1/T ). (As mentioned above, this requires advance knowledge of T .)
The uniform average was earlier shown by Kakade and Tewari [2008] to achieve error O(log(T )/T )
with high probability. Here, we will also employ the generalized Freedman’s Inequality to prove a
tight high-probability upper bound on the non-uniform averaging scheme.

2 Preliminaries

Let X be a closed, convex subset of Rn, f : X → R be a convex function, and ∂f(x) be the
subdifferential of f at x. Our goal is to solve the convex program minx∈X f(x). We assume that
f may not be explicitly represented. Instead, the algorithm is allowed to query f via a stochastic
gradient oracle, i.e., if the oracle is queried at x then it returns ĝ = g − ẑ where g ∈ ∂f(x) and
E [ ẑ ] = 0 conditioned on all past calls to the oracle. Furthermore, we assume that f is L-Lipschitz,
i.e. ‖g‖ ≤ L for all x ∈ X and g ∈ ∂f(x) and that f is µ-strongly convex, i.e.

f(y) ≥ f(x) + 〈 g, y − x 〉+
µ

2
‖y − x‖2 ∀y, x ∈ X , g ∈ ∂f(x). (1)

Throughout this paper, ‖·‖ denotes the Euclidean norm in Rn, ΠX denotes the projection operator
onto X and [T ] denotes the set {1, . . . , T}. For the sake of simplicity, we assume that ‖ẑ‖ ≤ 1 a.s.

In this paper, we analyze SGD with the averaging scheme proposed by Lacoste-Julien et al. [2012].
The algorithm is given in Algorithm 1.

Algorithm 1 Stochastic, projected gradient descent for minimizing a µ-strongly convex, L-Lipschitz
function with an unknown time horizon.

1: procedure PROJECTEDGRADIENTDESCENT(X ⊆ Rn, x1 ∈ X )
2: for t← 1, . . . , T do
3: Let ηt = 2

µ(t+1)

4: yt+1 ← xt − ηtĝt, where E [ ĝt | ĝ1, . . . , ĝt−1 ] ∈ ∂f(xt)
5: xt+1 ← ΠX (yt+1)

6: return
∑T
t=1

t
T (T+1)/2xt

Finally, we will use Ft to denote the σ-field generated by the random vectors ĝ1, . . . , ĝt.
Remark 2.1. As noted in Lacoste-Julien et al. [2012], the return value of Algorithm 1 can be
computed in an online manner. Indeed, we can set z1 = x1, and we can set zt = ρtxt + (1− ρt)zt−1
for t ≥ 2, where ρt = 2

t+1 . It is a straightforward calculation to check that zT =
∑T
t=1

t
T (T+1)/2xt.

2.1 Probability tools

Our main probabilistic tool is an extension of Freedman’s Inequality [Freedman, 1975] developed
recently by Harvey et al. [2018]. Roughly speaking, Freedman’s Inequality asserts that a martingale
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is bounded by the square root of its total conditional variance (TCV). As we shall see in the sequel,
the martingales that arise from analyzing SGD exhibit a “chicken-and-egg” phenomenon wherein the
TCV of the martingale is bounded by (a linear transformation of) the martingale itself. Here, we state
a specialized form of the Generalized Freedman’s Inequality which is a simple corollary from the
statement given in Harvey et al. [2018].
Theorem 2.2 (Generalized Freedman, [Harvey et al., 2018, Theorem 3.3]). Let {dt,Ft}Tt=1 be a mar-
tingale difference sequence. Suppose that, for t ∈ [T ], vt−1 are non-negative Ft−1-measurable ran-

dom variables satisfying E [ exp(λdt) | Ft−1 ] ≤ exp
(
λ2

2 vt−1

)
for all λ > 0. Let ST =

∑T
t=1 dt

and VT =
∑T
t=1 vt−1. Suppose there exists α1, . . . , αT , β ∈ R≥0 such that VT ≤

∑T
t=1 αtdt + β.

Let α ≥ maxt∈[T ] αt. Then

Pr [ST ≥ x ] ≤ exp

(
− x2

4α · x+ 8β

)
.

3 Main results

Our main result is a high-probability upper bound on the final iterate of Algorithm 1. The proof is
given in Section 4.
Theorem 3.1. Let X ⊆ Rn be a convex set. Suppose that f : X → R is µ-strongly convex (with
respect to ‖·‖2) and L-Lipschitz. Assume that:

(a) gt ∈ ∂f(xt) for all t (with probability 1).

(b) ‖ẑt‖ ≤ 1 (with probability 1).

Set ηt = 2
µ(t+1) and γt = t

T (T+1)/2 . Then, for any δ ∈ (0, 1), with probability at least 1− δ,

f

(
T∑
t=1

γtxt

)
− f(x∗) ≤ O

(
L · log(1/δ) + L2

µ
· 1

T

)
.

Remark 3.2. It is possible to strengthen the statement of Theorem 3.1 by replacing assumption
(a) with the weaker assumption that ‖ẑt‖ is subgaussian conditioned on Ft−1 (for example, ẑt ∼
N(0, 1

nIn)). A more detailed discussion can be found in the supplementary material.

We also show that the bound in Theorem 3.1 is tight up to constant factors. The proof is in Section 5.

Claim 3.3. Suppose
√

6 ≤
√

2 log(1/δ)

3 ≤
√
T/4. There exists a sub-gradient oracle such that

running Algorithm 1 on the function f(x) = x2

2 with step sizes ηt = 1
t+1 satisfies the following. With

probability at least δ

f

(
T∑
t=1

γtxt

)
− f(x∗) ≥ log(1/δ)

9 · T
,

where γt = t
T (T+1)/2 .

4 Proof of high probability upper bound

The proof follows that of Lacoste-Julien et al. [2012] but we must be careful with the noise terms
as our goal is obtain a high probability bound. We will need one technical lemma whose proof we
relegate to the next subsection.

Lemma 4.1. Let ZT =
∑T
t=1 t · 〈 ẑt, xt−x∗ 〉. Then for any δ ∈ (0, 1), ZT ≤ O

(
L
µ · T log(1/δ)

)
,

with probability at least 1− δ.

Proof (of Theorem 3.1). Define ẑt = gt − ĝt. Since f is µ-strongly convex, we have

f(xt)− f(x∗) ≤ 〈 gt, xt − x∗ 〉 −
µ

2
‖xt − x∗‖22
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= 〈 ĝt, xt − x∗ 〉 −
µ

2
‖xt − x∗‖22 + 〈 ẑt, xt − x∗ 〉.

The first two terms can be bounded as follows.

〈 ĝt, xt − x∗ 〉 −
µ

2
‖xt − x∗‖22

=
1

ηt
〈 xt − yt+1, xt − x∗ 〉 −

µ

2
‖xt − x∗‖22 (by the gradient step)

=
1

2ηt

(
‖xt − yt+1‖22 + ‖xt − x∗‖22 − ‖yt+1 − x∗‖22

)
− µ

2
‖xt − x∗‖22

≤ 1

2ηt

(
‖xt − yt+1‖22 + ‖xt − x∗‖22 − ‖xt+1 − x∗‖22

)
− µ

2
‖xt − x∗‖22 .

The last line uses a property of Euclidean projections: since xt+1 is the projected point ΠX (yt+1)

and x∗ ∈ X , we have ‖xt+1 − x∗‖22 ≤ ‖yt+1 − x∗‖22.

It is convenient to scale by t in order to later obtain a telescoping sum. Using the definition of the
gradient step, i.e. xt − yt+1 = ηtĝt, we have

t ·
(
f(xt)− f(x∗)− 〈 ẑt, xt − x∗ 〉

)
≤

t ‖ηtĝt‖22
2ηt

+ t
( 1

2ηt
− µ

2

)
‖xt − x∗‖22 −

t

2ηt
‖xt+1 − x∗‖22

=
t ‖ĝt‖22
µ(t+ 1)

+
(µt(t+ 1)

4
− 2µt

4

)
‖xt − x∗‖22 −

t(t+ 1)µ

4
‖xt+1 − x∗‖22

≤ (L+ 1)2

µ
+
µ

4
·
(
t(t− 1) ‖xt − x∗‖22 − t(t+ 1) ‖xt+1 − x∗‖22

)
.

Now, summing over t, the right-hand side telescopes and we obtain

T∑
t=1

t ·
(
f(xt)− f(x∗)

)
≤

T∑
t=1

t · 〈 ẑt, xt − x∗ 〉+
T · (L+ 1)2

µ

Dividing by T (T + 1)/2 and applying Jensen’s inequality, we obtain

f
( T∑
t=1

γtxt

)
− f(x∗) ≤

T∑
t=1

γt ·
(
f(xt)− f(x∗)

)
≤ 2

T (T + 1)

T∑
t=1

t · 〈 ẑt, xt − x∗ 〉︸ ︷︷ ︸
=:ZT

+
2 · (L+ 1)2

µ(T + 1)
.

Finally, we can use Lemma 4.1 to obtain a high probability bound on ZT , completing the proof of the
theorem.

4.1 Bounding ZT

Observe that ZT is a sum of a martingale difference sequence. Define dt = t · 〈 ẑt, xt − x∗ 〉,
vt−1 := t2 ‖xt − x∗‖, and VT =

∑T
t=1 vt−1. Note that vt−1 is Ft−1-measurable. The next claim

shows that vt−1 and dt satisfy the assumptions of Generalized Freedman’s inequality (Theorem 2.2).

Claim 4.2. For all t and λ > 0, we have E [ exp (λdt) | Ft−1 ] ≤ exp
(
λ2

2 vt−1

)
.

Proof. First, we can apply Cauchy-Schwarz to get that |t〈 ẑt, xt − x∗ 〉| ≤ t · ‖ẑt‖ · ‖xt − x∗‖ ≤
t·‖xt − x∗‖ because ‖ẑt‖ ≤ 1 a.s. Next, applying Hoeffding’s Lemma ([Massart, 2007, Lemma 2.6]),
we have E [ exp (λt〈 ẑt, xt − x∗ 〉) | Ft−1 ] ≤ exp

(
λ2

2 t
2 ‖xt − x∗‖2

)
.
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To bound ZT , we will show that we can bound its TCV by a linear combination of the increments.
This will allow us to use the Generalized Freedman Inequality (Theorem 2.2).

Lemma 4.3. There exists non-negative constants α1, . . . , αT such that maxi∈[T ] {αi} = O
(
T
µ

)
and β = O

(
L2

µ2 T
2
)

such that VT ≤
∑T
t=1 αtdt + β.

Proof (of Lemma 4.1). By Claim 4.2, we have E [ exp(λdt) | Ft−1 ] ≤ exp
(
λ2

2 vt−1

)
for all λ >

0. By Lemma 4.3, we have VT ≤
∑T
t=1 αtdt + β. Plugging α = O

(
T
µ

)
, β = O

(
L2

µ2 T
2
)

, and

x = O
(
L
µ · T log(1/δ)

)
into Theorem 2.2 proves the lemma.

It remains to prove Lemma 4.3. To do so, we will need the following two lemmata, which are adapted
from Rakhlin et al. [2012] to use the step sizes ηt = 2

µ(t+1) . For completeness, we provide a proof in
the supplementary material.
Lemma 4.4 ([Rakhlin et al., 2012, Lemma 5]). With probability 1, and for all t, ‖xt − x∗‖ ≤ 2L

µ .

Lemma 4.5 ([Rakhlin et al., 2012, Lemma 6]). For all t ≥ 3, there exists non-negative numbers
a1(t), . . . , at(t) with ai(t) = Θ(i3/t4) and b1(t), . . . , bt(t) with bi(t) = Θ(i2/t4), such that with
probability 1

‖xt+1 − x∗‖2 ≤
4

µ

t∑
i=3

ai(t)〈 ẑi, xi − x∗ 〉+
4

µ2

t∑
i=3

bi(t) ‖ĝt‖2 .

Remark 4.6. Lemma 4.4 and Lemma 4.5 are true regardless of the assumption we place on ẑt.

Proof (of Lemma 4.3). Recall ‖ĝi‖ ≤ L+ 1 because f is L-Lipschitz and ‖ẑi‖ ≤ 1 almost surely.
By Lemma 4.4 and Lemma 4.5, we have:
VT

=

T∑
t=1

t2 · ‖xt − x∗‖2

≤ 56L2

µ2
+

T∑
t=4

t2

(
4

µ

t−1∑
i=3

ai(t− 1)〈 ẑi, xi − x∗ 〉+
4

µ2

t−1∑
i=3

bi(t− 1) ‖ĝi‖2
)

≤ 56L2

µ2
+

T∑
t=4

t2

(
4

µ

t−1∑
i=3

ai(t− 1)〈 ẑi, xi − x∗ 〉+
4(L+ 1)2

µ2

t−1∑
i=3

bi(t− 1)

)

=
4

µ

T∑
t=4

t2

(
t−1∑
i=3

ai(t− 1)〈 ẑi, xi − x∗ 〉

)
+

4(L+ 1)2

µ2

T∑
t=4

t2

(
t−1∑
i=3

bi(t− 1)

)
+

56L2

µ2

=

T−1∑
i=3

4

µ

(
T∑

t=i+1

t2 · ai(t− 1)

i

)
︸ ︷︷ ︸

:=αi

·i〈 ẑi, xi − x∗ 〉+
4(L+ 1)2

µ2

T∑
t=4

t2

(
t−1∑
i=3

bi(t− 1)

)
+

56L2

µ2︸ ︷︷ ︸
:=β

Define α1, α2, αT = 0.We have VT ≤
∑T
i=1 αi ·i·〈ẑi, xi−x∗〉+β. It remains to show max {αi} =

O
(
T
µ

)
and β = O

(
L2

µ2 T
2
)
. To bound max {αi}, observe that for i ∈ {3, . . . , T − 1} ,

T∑
t=i+1

t2 · ai(t− 1)

i
=

T∑
t=i+1

t2O

(
i2

t4

)
=

T∑
t=i+1

t2O

(
1

t2

)
= O (T − i) .

To bound β, observe
T∑
t=4

t2

(
t−1∑
i=3

bi(t− 1)

)
=

T∑
t=4

t2
t−1∑
i=3

O

(
i2

t4

)
=

T∑
t=4

t2
t−1∑
i=3

O

(
1

t2

)
=

T∑
t=4

O(t) = O(T 2).
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5 Description of high probability lower bound

Setup of the lower bound. Consider the one dimensional, 1-strongly convex function f(x) = 1
2x

2

with feasible region X = [−6, 6]. Suppose, that at any point xt, the gradient oracle returns a value
of the form xt − ẑt, where E [ ẑt ] = 0. Clearly, this is a valid subgradient oracle. Suppose we run
Algorithm 1 with a slightly modified step size of ηt = 1

t+1 starting from initial point x1 = 0.

Remark 5.1. Note that we are using a step size of 1
t+1 instead of the step size 2

t+1 used in the
statement of Algorithm 1. It is possible to modify the analysis to use the step size as stated in
Algorithm 1, however the analysis is much cleaner using 1

t+1 and still captures the main ideas.

Claim 5.2. Suppose x1 = 0 and assume |ẑt| ≤ 6. Then, xt = 1
t

∑t−1
i=1 ẑi for all 2 ≤ t ≤ T .

Definition of gradient oracle. Let ẑt = 0 if t ≤ T
2 or T > 3T

4 and otherwise for T/2 + 1 ≤ t ≤ 3T
4 ,

define ẑt = T+1
T−tXt where Xt is uniform in {+1,−1} . Note that this gradient oracle satisfies the

conditions of Claim 5.2. That is |ẑt| ≤ 6 for all t, as long as T ≥ 2.

By definition of ẑt and Claim 5.2, one can check that
∑T
i=1 γtxt is an average of Bernoulli random

variables. Applying a reverse Chernoff bound from Klein and Young [2015] completes the proof.
The complete details can be found in the supplementary materials.

6 Experimental results

The four return strategies discussed in this paper have fairly similar theoretical guarantees. The
aim of this section is to compare the strategies on real data sets, focusing on two aspects of their
performance: the expectation and the concentration of the objective value. The results are shown in
Figure 1. Additional experimental results can be found in the supplementary material (Section D).

The results of the experiments reveal a clear message. The final iterate and the uniform average
return strategies perform noticeably worse than the suffix average and non-uniform average, both
in terms of expectation and concentration. This is consistent with the fact that their theoretical
guarantees are also worse. The performance of the suffix average and the non-uniform average are
nearly indistinguishable, with the suffix average having a slight advantage in expectation.

Methodology. We consider the regularized SVM optimization problem

f(w) :=
λ

2
‖w‖2 +

m∑
i=1

max
{

0, 1− yiwTxi
}
,

where m is the number of data points and we use n to denote the dimension of each data point.
We run SGD with step size ηt = 2

t+1 and with regularization parameter λ = 1/m. This particular
step size is required for Theorem 3.1, and the analyses for the other averaging schemes can also
accommodate this choice of step size. Furthermore, we found that the relative performance of the
different averaging schemes is not particularly sensitive to the choice in step size. We plot the value
of f for each return strategy every m iterations (which we refer to as an ‘effective pass’). Since the
output of SGD is random, there is a distribution over the outputs which we would like to capture.
We run 1000 trials of SGD. The colored curves are exactly these 1000 trials, which are plotted with
low opacity. At any point in time, the darkness of the plot at a specific objective value indicates the
number of trials that achieved that value at that time. The dotted dark lines represent the average
amongst the trials.

Figure 1 suggests that practitioners should consider using the suffix average or non-uniform average
in lieu of the final iterate or uniform average. It is possible to implement suffix averaging and
non-uniform averaging with minimal effort, and the performance boost is significant. Implementing
non-uniform averaging (even when the time horizon is not fixed ahead of time) only requires a single
additional line of code.
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Data sets. We performed our experiments on a set of freely available binary classification data
sets. The experiments from this section use the cina0 (n = 16033 and d = 132) and the protein
(m = 145751 and n = 74) data sets. We ran the same experiments on the rcv1 (m = 20242 and
n = 47236), covtype (m = 581, 012 and n = 54) and quantum (m = 50000 and n = 78) data sets.
The results for these data sets can be found in Section D. Sparse features were scaled to [0, 1] whereas
dense features were scaled to have zero mean and unit variance. Data sets quantum and protein can
be found at the KDD cup 2004 website, cina0 can be found at the Causality Workbench website and
covtype and rcv1 can be found at the LIBSVM website.
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(a) cina0

(b) protein

Figure 1: Number of effective passes vs. objective value. The first row plots the results using the cina0 data set, whereas the second plots results using the protein
data set. From left to right, we plot the objective value over time of the final iterate, uniform average, suffix average and non-uniform average for 1000 trials of SGD.
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A Proof of Lemma 4.4 and Lemma 4.5

Both of the proofs in this section are slight modifications of the proofs found in Rakhlin et al. [2012].

Proof (of Lemma 4.4). Due to strong convexity and the fact that f(xt)− f(x∗) ≥ 0, we have

L ‖xt − x∗‖ ≥ ‖gt‖ ‖xt − x∗‖ ≥ 〈 gt, xt − x∗ 〉 ≥
µ

2
‖xt − x∗‖2 ,

where we used L-Lipschitzness of f to bound ‖gt‖ by L.

Proof (of Lemma 4.5). The definition of strong convexity yields

〈 gt, xt − x∗ 〉 ≥ f(xt)− f(x∗) +
µ

2
‖xt − x∗‖2 .

Strong convexity and the fact that 0 ∈ ∂f(x∗) implies

f(xt)− f(x∗) ≥ µ

2
‖xt − x∗‖2 .

Next, recall that for any x ∈ X , and for any z, we have ‖ΠX (z)− x‖ ≤ ‖z − x‖ . Lastly, recall
ηt = 2

µ(t+1) . Using these, we have

‖xt+1 − x∗‖2 = ‖ΠX (xt − ηtĝt)− x∗‖2

≤ ‖xt − ηtĝt − x∗‖2

= ‖xt − x∗‖2 − 2ηt〈 ĝt, xt − x∗ 〉+ η2t ‖ĝt‖
2

= ‖xt − x∗‖2 − 2ηt〈 gt, xt − x∗ 〉+ 2ηt〈 ẑt, xt − x∗ 〉+ η2t ‖ĝt‖
2

≤ ‖xt − x∗‖2 − 2ηt (f(xt)− f(x∗))− ηtµ ‖xt − x∗‖2 (2)

+ 2ηt〈 ẑt, xt − x∗ 〉+ η2t ‖ĝt‖
2

≤ (1− 2ηtµ) ‖xt − x∗‖2 + 2ηt〈 ẑt, xt − x∗ 〉+ η2t ‖ĝt‖
2

=

(
1− 4

t+ 1

)
‖xt − x∗‖2 +

4

µ(t+ 1)
〈 ẑt, xt − x∗ 〉+

4

µ2(t+ 1)2
‖ĝt‖2 . (3)

Repeatedly applying Eq. (3) until t = 4, yields the following

‖xt+1 − x∗‖2 ≤
4

µ

t∑
i=4

 1

i+ 1

t∏
j=i+1

(
1− 4

j + 1

) · 〈 ẑi, xi − x∗ 〉
+

4

µ2

t∑
i=4

 1

(i+ 1)2

t∏
j=i+1

(
1− 4

j + 1

) · ‖ĝt‖ . (4)

Observing that

t∏
j=i+1

(
1− 4

j + 1

)
=

t∏
j=i+1

j − 3

j + 1
=

(i− 2) · (i− 1) · i · (i+ 1)

(t− 2) · (t− 1) · t · (t+ 1)
,

proves the lemma by taking ai(t) = 1
i+1 ·

(i−2)·(i−1)·i·(i+1)
(t−2)·(t−1)·t·(t+1) and bi(t) = 1

(i+1)2 ·
(i−2)·(i−1)·i·(i+1)
(t−2)·(t−1)·t·(t+1)

B Proof of high probability lower bound

In this section we show that the error of SGD when returning
∑T
t=1

t
T (T+1)/2xt is Ω(log(1/δ)/T )

with probability at least δ. We begin by stating a useful lemma.
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Lemma B.1 ([Klein and Young, 2015, Lemma 4]). LetX1, . . . , Xn be independent random variables
taking value {−1,+1} uniformly at random and X = 1

n

∑n
i=1Xi. Suppose

√
6 ≤ c ≤

√
n/2, then

Pr

[
X ≥ c√

n

]
≥ exp(−9c2/2).

Proof (of Claim 3.3). Since the gradient oracle satisfies the assumption in Claim 5.2 (which we
prove below), we may apply Claim 5.2 to obtain:

T∑
t=1

γtxt =

T∑
t=2

γt

[
1

t

t−1∑
i=1

ẑi

]
(by Claim 5.2)

=
2

T (T + 1)

T∑
t=2

t−1∑
i=1

ẑi (definition of γt)

=
2

T (T + 1)

T−1∑
i=1

ẑi · (T − i) (swap order of summation)

=
2

T (T + 1)

3T/4∑
i=T/2+1

ẑi · (T − i) (ẑi = 0 for all other i)

=
2

4

 1

T/4

3T/4∑
i=T/2+1

Xi

 (definition of ẑi).

Now, we may apply Lemma B.1 with c =

√
2 log(1/δ)

3 , and n = T/4 to obtain:

f

(
T∑
t=1

γtxt

)
=

1

2

(
T∑
t=1

γtxt

)2

≥ 1

2

(
1

2

√
2 log(1/δ)

3
√
T/4

)2

=
log(1/δ)

9 · T
,

with probability at least δ.

The proof of Claim 3.3 required the use of Claim 5.2. We now provide a proof of this claim

Proof (of Claim 5.2). We prove the claim via induction. For the base case consider x2 =
ΠX (x1 − η1ĝ1). Recall that ĝ1 = g1 − ẑ1 where g1 is the gradient of f at x1. Since x1 = 0,
we have g1 = 0 and x2 = ΠX (η1ẑ1) = 1

2 ẑ1 because |ẑt| ≤ 1 for all t and ηt = 1
t+1 .

Next, assume that xt = 1
t

∑t−1
i=1 ẑi. Then, xt+1 = ΠX (yt) where yt = xt − ηtĝt where ĝt =

∇f(xt)− ẑt. Hence, we have

yt =
1

t

t−1∑
i=1

ẑt − ηt

(
1

t

t−1∑
i=1

ẑi − ẑt

)
=

1

t+ 1

t∑
i=1

ẑt.

Clearly, yt ∈ X , and therefore xt+1 = yt = 1
t+1

∑t
i=1 ẑt as desired.

C Subgaussian noise extension

The main result in this section is a strengthening of Theorem 3.1 by weakening the bounded noise
assumption on the stochastic gradient oracle. First, we require a definition.

Definition C.1. A random variable X is said to be κ-subgaussian if E
[

exp
(
X2/κ2

) ]
≤ 2. In

additional, we say that X is κ-subgaussian conditioned on F if E
[

exp
(
X2/κ2

) ]
≤ 2. Note that

κ2 in this setting may itself be a random variable.

12



Remark C.2. Note that the class of subgaussian random variables contains bounded random
variables. Furthermore, this class also contains Gaussian random variables (which, of course, are
not bounded). Therefore, the following theorem is indeed a strengthening of Theorem 3.1, which only
dealt with stochastic gradient oracles that used almost surely bounded noise.

Theorem C.3. Let X ⊆ Rn be a convex set. Suppose that f : X → R is µ-strongly convex (with
respect to ‖·‖2) and L-Lipschitz. Assume that:

(a) gt ∈ ∂f(xt) for all t (with probability 1).

(b) ‖ẑt‖ is κ-subgaussian conditioned on Ft−1 for some κ ∈ R.

Set ηt = 2
µ(t+1) . Let γt = t

T (T+1)/2 . Then, for any δ ∈ (0, 1), with probability at least 1 − δ we
have,

f

(
T∑
t=1

γtxt

)
− f(x∗) ≤ O

(
(L+ κ)2

µ
· log (1/δ)

T

)
.

Proof (of Theorem C.3). We may follow the proof of Theorem 3.1 from Section 4 and remove any
bound used on ‖ĝt‖2 to obtain

f

(
T∑
t=1

γtxt

)
− f(x∗) ≤ 2

T (T + 1)

T∑
t=1

t · 〈 ẑt, xt − x∗ 〉︸ ︷︷ ︸
:=ZT

+
2

µT (T + 1)

T∑
t=1

‖ĝt‖2 . (5)

Theorem C.3 follows trivially from the following two lemmata:

Lemma C.4. For any δ ∈ (0, 1),
∑T
t=1 ‖ĝt‖

2
= O

(
(L+ κ)

2
T · log(1/δ)

)
with probability at

least 1− δ.

Lemma C.5. Let ZT =
∑T
t=1 t · 〈 ẑt, xt − x∗ 〉. Then, for any δ ∈ (0, 1), we have ZT =

O
(

(L+κ)2

µ T · log(1/δ)
)

with probability at least 1− δ.

C.1 Proof of Lemma C.4

We begin with a fact about subgaussian random variables.
Claim C.6. Let X be a random variable. Define ‖X‖ψ2

as inf
{
t > 0 : E

[
exp

(
X2/t2

) ]
≤ 2

}
.

Then, ‖·‖ψ2
is a norm.

Observe that X is κ-subgaussian if and only if ‖X‖ψ2
≤ κ. As a consequence of Claim C.6, we have

the following claim.
Claim C.7. There exists ξ = O(L+ κ), such that ‖ĝt‖ is ξ-subgaussian conditioned on Ft−1.

Proof. Using the triangle inequality, we have

‖ĝt‖ = ‖gt − ẑt‖ ≤ ‖g‖t + ‖ẑt‖ .

Therefore,

‖‖ĝt‖ | Ft−1‖ψ2
≤ ‖‖gt‖ | Ft−1‖ψ2

+ ‖‖ẑt‖ | Ft−1‖ψ2
≤ ‖‖g‖t | Ft−1‖ψ2

+ k,

because we assumed ‖ẑt‖ is conditionally κ-subgaussian. Also, note that ‖gt‖ is conditionally
(L/ ln 2)-subgaussian because f is L-Lipschitz and so ‖gt‖ ≤ L.

Now, we proceed to prove Lemma C.4 using an MGF bound:

Claim C.8. There exists ξ = O (L+ κ) such that E
[

exp
(∑T

i=1 ‖ĝi‖
2
/
(
T · ξ2

)) ]
≤ 2.
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Using Claim C.8 we can prove Lemma C.4:

Proof (of Lemma C.4). Using the exponentiated Markov inequality we have for any λ > 0:

Pr

[
T∑
t=1

‖ĝt‖2 ≥ x

]
≤

E
[

exp
(
λ
∑T
t=1 ‖ĝt‖

2
) ]

exp (λx)
.

Plugging in λ = O
(

1
T ·ξ2

)
and x = O

(
T · ξ2 log(1/δ)

)
completes the proof.

It remains to prove Claim C.8.

Proof (of Claim C.8). We will show that for every 1 ≤ t ≤ T,

E

[
exp

(
t∑
i=1

‖ĝi‖2 /(T · ξ2)

)]
≤ 21/T E

[
exp

(
t−1∑
i=1

‖ĝi‖2 /(T · ξ2)

)]
. (6)

Indeed,

E

[
exp

(
t∑
i=1

‖ĝi‖2 /(T · ξ2)

)]

= E

[
exp

(
t−1∑
i=1

‖ĝi‖2 /(T · ξ2)

)
E
[

exp
(
‖ĝt‖2 /(T · ξ2)

)
| Ft−1

] ]
.

Furthermore,
E
[

exp
(
‖ĝt‖2 /(T · ξ2)

)
| Ft−1

]
≤ 21/T

for all 1 ≤ t ≤ T using Claim C.7 and Jensen’s inequality. Therefore, Eq. (6) is true for all
1 ≤ t ≤ T .

Hence,

E

[
exp

(
t∑
i=1

‖ĝi‖2 /(T · ξ2)

)]
≤
(

21/T
)T

= 2,

as desired.

C.2 Proof of Lemma C.5

We may follow the proof of Lemma 4.1 from Subsection 4.1. Define dt = t · 〈 ẑt, xt − x∗ 〉,
ṽt−1 := 2κ2 · t2 ‖xt − x∗‖2 , and ṼT =

∑T
t=1 ṽt−1. Note that ṽt−1 is Ft−1-measurable.

Claim C.9. For all t and λ > 0, we have

E [ exp (λdt) | Ft−1 ] ≤ exp

(
λ2

2
ṽt−1

)
.

The proof of this requires a lemma from Vershynin [2018].
Lemma C.10 ([Vershynin, 2018, Proposition 2.5.2]). Suppose X is a mean-zero random variable
such that E

[
exp

(
X/κ2

) ]
≤ 2. Then, E [ exp(λX) ] ≤ exp

(
λ2κ2

)
for all λ > 0.

Proof (of Claim C.9). Because ‖ẑt‖ is κ-subgaussian conditioned on Ft−1, we have by Cauchy-
Schwarz

E

[
exp

(
t2 · 〈 ẑt, xt − x∗ 〉2

κ2 · t2 ‖xt − x∗‖2

)
| Ft−1

]
≤ E

[
exp

(
‖ẑt‖2 /κ2

)
| Ft−1

]
≤ 2.

Therefore, by Lemma C.10 we have

E [ exp (λ) | Ft−1 ] ≤ exp

(
λ2

2
(2κ2 · t2 ‖xt − x∗‖2

)
,

as desired.
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To bound ZT , we will proceed similarly as in Subsection 4.1. We will bound the TCV of ZT by a
linear combination of the increments. The only difference is, we will show that this bound holds with
high probability, instead of with probability one. This will allow us to use a form of the Generalized
Freedman Inequality (Theorem C.12) which the case where we can bound the total conditional
variance by a linear transformation of the increments of the martingale with high probability.

Lemma C.11. There exists non-negative constants α1, . . . , αT = O
(

(L+ κ)2 Tµ

)
and β =

O
(

(L+κ)4

µ2 T 2
)

such that for every δ ∈ (0, 1), ṼT ≤
∑T
t=1 αtdt + β log(1/δ) with probability

at least 1− δ.

Given Lemma C.11, we are ready to prove Lemma C.5. But first, we require a slightly more
general version of the Generalized Freedman Inequality where the bound on the TCV by a linear
transformation of the increments of the martingale holds only with arbitrarily high probability, rather
than with probability 1.
Theorem C.12 (Generalized Freedman, [Harvey et al., 2018, Theorem 3.3]). Let {dt,Ft}Tt=1 be a
martingale difference sequence. Suppose that, for t ∈ [T ], vt−1 are non-negative Ft−1-measurable

random variables satisfying E [ exp(λdt) | Ft−1 ] ≤ exp
(
λ2

2 vt−1

)
for all λ > 0. Let ST =∑T

t=1 dt and VT =
∑T
t=1 vt−1. Suppose there exists α1, . . . , αT , β ∈ R≥0 such that for every

δ ∈ (0, 1), VT ≤
∑T
t=1 αtdt + β log(1/δ). Let α ≥ maxt∈[T ] αt. Then

Pr [ST ≥ x ] ≤ exp

(
− x2

4α · x+ 8β

)
+ δ.

Proof (of Lemma C.5). By Claim C.9 we have E [ exp (λdt) | Ft−1 ] ≤ exp
(
λ2

2 ṽt−1

)
. By

Lemma C.11 we have that for every δ ∈ (0, 1) ṼT ≤
∑T
t=1 αtdt + β log(1/δ), with proba-

bility at least 1 − δ. Plugging α = O
(

(L+ κ)2 Tµ

)
, β = O

(
(L+κ)4

µ2 T 2 log(1/δ)
)

and x =

O
(

(L+κ)2

µ · T log(1/δ)
)

into Theorem C.12, proves Lemma C.5.

It remains to prove Lemma C.11.

Proof (of Lemma C.11). Observe that ṼT = 2κ2VT =
∑T
t=1 t

2 · ‖xt − x∗‖2 where VT was defined
in Subsection 4.1. We focus our attention on bounding VT , and then scale up accordingly at the end.

We may follow the proof of Lemma 4.3 with a key modification: Do not bound ‖ĝi‖ by L+ 1 as this
is no longer valid, because we no longer are using the bounded noise assumption.

This yields:

VT (7)

≤
T−1∑
i=3

4

µ

(
T∑

t=i+1

t2
ai(t− 1)

i

)
︸ ︷︷ ︸

:=αi

·i · 〈 ẑi, xi − x∗ 〉+
4

µ2

T∑
t=4

t2

(
t−1∑
i=3

bi(t− 1) ‖ĝi‖2
)

︸ ︷︷ ︸
:=GT

+
56L2

µ2
.

(8)

Define α1, α2, αT = 0. We already showed in the proof of Lemma 4.3 that αi = O
(
T
µ

)
. Therefore,

it remains to bound GT by O
(
(L+ κ)2T 2 · log(1/δ)

)
, with probability at least 1− δ. We rewrite

GT as

GT =

T−1∑
i=3

(
T∑

t=i+1

t2bi(t− 1)

)
︸ ︷︷ ︸

:=si

· ‖ĝi‖2 =

T−1∑
i=3

si ‖ĝi‖2 .

We use the following MGF bound on GT , which we prove below.
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Claim C.13. E [ exp (λGT ) ] ≤ exp
(
λO
(
ξ2
)∑T−1

i=3 si

)
for all λ = O

(
1

ξ2 max{si}

)
.

Therefore, via an exponentiated Markov inequality and Claim C.13, we have

Pr [GT ≥ x ] ≤ E [ exp (λGT ) ]

exp (λx)
≤ exp

(
λO
(
ξ2
) T−1∑
i=3

si − λx

)
.

Setting λ = O
(

1
ξ2

∑T−1
i=3 si

)
and x = O

(
ξ2
∑T−1
i=3 si · log(1/δ)

)
shows GT ≤

O
(
ξ2
∑T−1
i=3 si · log(1/δ)

)
with probability at least 1− δ. Observe that si = O(T ) :

si =

T∑
t=i+1

t2bi(t− 1) =

T∑
t=i+1

t2O

(
i2

t4

)
=

T∑
t=i+1

O (1) = O (T ) .

Therefore x = O
(
ξ2T 2 log(1/δ)

)
= O

(
(L+ κ)2T 2 log(1/δ)

)
, with probability at least 1 − δ.

That is, with probability at least 1− δ

GT ≤ O
(

(L+ κ)
2
T 2 log(1/δ)

)
.

Plugging this back in to Eq. (7), we obtain

VT ≤
T∑
i=1

αidi + β log(1/δ)

where αi = O(Tµ ) and β = O
(

(L+κ)2

µ2 T 2 · log(1/δ)
)

. Multiplying both sides by 2κ2 yields the

desired bound on ṼT .

Now it remains to prove Claim C.13.

Proof (of Claim C.13). We will show that for every t and for all λ ≤ 1/max {si},

E

[
exp

(
λ

t∑
i=3

si ‖ĝi‖2
)]
≤ exp

(
λO
(
ξ2
)
st
)

E

[
exp

(
λ

t−1∑
i=3

si

)]
.

The claim then follows by recursively applying the above inequality. Note that si is Fi−1 measurable.
So, we have

E

[
exp

(
λ

t∑
i=3

si ‖ĝi‖2
)]

= E

[
exp

(
λ

t−1∑
i=3

si ‖ĝi‖2
)

E
[

exp
(
λst ‖ĝt‖2

)
| Ft−1

] ]
.

Note that because ‖‖ĝt‖ | Ft−1‖ψ2
≤ ξ, this implies

E
[

exp
(
‖ĝt‖2 /ξ2

)
| Ft−1

]
≤ 2.

Therefore, if λ = O
(

1
ξ2

)
. Then by Jensens inequality, raising both sides of the above inequality to

the power of λξ2 yields

E
[

exp
(
λ ‖ĝt‖2

)
| Ft−1

]
≤ exp

(
λO
(
ξ2
))
.

Hence, if λ = O
(

1
ξ2 max{si}

)
, then for every t we have

E
[

exp
(
λst ‖ĝt‖2

)
| Ft−1

]
≤ exp

(
λO
(
ξ2
)
st
)
,

which completes the proof.
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D Additional experiments

In each experiment we run SGD for the regularized SVM optimization problem described in Section 6.
We use regularization parameter λ = 1/n and step size ηt = 2

µ(t+1) . For each return strategy, we
run many trials of SGD and plot the objective value over time for every trial. At any point in time,
the darkness of the plot at a specific objective value indicates the number of trials that achieved that
value at that time.

We use the freely available data sets quantum (m = 50000 and n = 78), covtype (m = 581012 and
n = 54) and rcv1 (m = 20242 and n = 47236). We run 1000 trials of SGD on the quantum data set,
80 trials of SGD on the covtype data set and 70 trials of SGD on the rcv1 data set. The quantum data
set can be found at the KDD cup 2004 website and covtype and rcv1 can be found at the LIBSVM
website.
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(a) quantum

(b) covtype (80 trials)
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(c) rcv1 (70 trials)

Figure 2: Number of effective passes vs. objective value. Figure 2a plots the results for the quantum dataset; Figure 2b plots the results for covtype dataset; Figure 2c
plots the results for the rcv1 dataset. From left to right, we plot the objective value over time of the final iterate, uniform average, suffix average and non-uniform
average for 1000 trials of SGD.
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