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The Vickrey Auction with a Single Duplicate Bidder Approximates

the Optimal Revenue

Hu Fu∗ Christopher Liaw∗ Sikander Randhawa∗
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Bulow and Klemperer’s well-known result states that, in a single-item auction where the n
bidders’ values are independently and identically drawn from a regular distribution, the Vickrey
auction with one additional bidder (a duplicate) extracts at least as much revenue as the optimal
auction without the duplicate. Hartline and Roughgarden, in their influential 2009 paper, removed
the requirement that the distributions be identical, at the cost of allowing the Vickrey auction
to recruit n duplicates, one from each distribution, and relaxing its revenue advantage to a 2-
approximation.

In this work we restore Bulow and Klemperer’s number of duplicates in Hartline and Roughgar-
den’s more general setting with a worse approximation ratio. We show that recruiting a duplicate
from one of the distributions suffices for the Vickrey auction to 10-approximate the optimal rev-
enue. We also show that in a k-items unit demand auction, recruiting k duplicates suffices for the
VCG auction to O(1)-approximate the optimal revenue.

As another result, we tighten the analysis for Hartline and Roughgarden’s Vickrey auction with
n duplicates for the case with two bidders in the auction. We show that in this case the Vickrey
auction with two duplicates obtains at least 3/4 of the optimal revenue. This is tight by meeting
a lower bound by Hartline and Roughgarden. En route, we obtain a transparent analysis of their
2-approximation for n bidders, via a natural connection to Ronen’s lookahead auction.
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1 Introduction

Bulow and Klemperer’s theorem [3] is a fundamental result in the auction literature, drawing a
connection between two basic auctions for selling a single item. The second price auction, also
known as the Vickrey auction [18], lets the highest bidder win the item at the price of the second
highest bid. It always sells to the highest bidder, thereby maximizing the market’s efficiency,
requires no prior information on the bidders, and is easy to implement in practice. On the other
hand, revenue optimal auctions, those that generate the most revenue for the auctioneer, are usually
more intricate. They may sometimes not sell to anyone, or sell to a bidder who does not place
the highest bid, and their rules in general depend on prior information on bidders’ values [14].
Bulow and Klemperer showed that, in the case where bidders’ values are drawn independently and
identically from a distribution that satisfies a commonly assumed property known as regularity,
the simple Vickrey auction with n + 1 bidders extracts no less revenue than the revenue optimal
auction with n bidders, for any n ≥ 1. This fundamental result makes an elegant comparison
between the revenue impact brought by enhanced competition and that attributed to more precise
market information and tailored auction design. It holds for a large family of distributions, as long
as the bidders’ values are i.i.d. drawn.

Hartline and Roughgarden [11], in their seminal work that started a fruitful line of research on
the revenue of simple auctions (as exemplified by the Vickrey auction), extended Bulow and Klemperer’s
result, with approximation, when one removes the assumption of symmetry, i.e., when bidders’ val-
ues are drawn independently but not identically from regular distributions. This extension is
approximate for two changes it makes in the comparison between the two auctions. First, the Vick-
rey auction, instead of recruiting only one additional bidder, is now allowed to recruit n additional
bidders (called duplicates), one from each distribution. Second, the revenue of this Vickrey auction
with n duplicates, instead of being lower bounded by the optimal revenue without duplicates, is
shown to be at least half as much. Bidders with different value distributions are often interpreted as
coming from different populations or possessing different characteristics. Under this interpretation,
the Vickrey auction is shown to approximate the optimal revenue if one is allowed to recruit at least
one additional bidder from each population. Hartline and Roughgarden also gave an example with
two bidders where the Vickrey auction, even with two duplicate bidders, one from each distribution,
extracts only 3/4 of the revenue of the optimal auction without duplicates.

The two changes made in Hartline and Roughgarden’s result leave two gaps between the be-
havior of auctions with i.i.d. bidders and those with independent but non-identical ones. The first
gap is a necessary one: Hartline and Roughgarden’s example shows that, absent symmetry among
bidders, a constant fraction of revenue has to be lost by using the simpler Vickrey auction, even
when all bidders are duplicated. The other gap has been an open question: how many duplicate
bidders are needed for the Vickrey auction to give a constant approximation to the optimal revenue?
Whereas for the i.i.d. case a single duplicate bidder suffices, it has remained unknown whether n
duplicates are necessary when the value distributions are not identical.

1.1 Main Results

Vickrey auction with a single duplicate. In this work, we close this second gap. We show
that, in a single-item auction with n bidders, whose values are drawn independently from possibly
different regular distributions, the Vickrey auction with one additional bidder with value drawn
from one of the existing distributions obtains at least 1

10 of the optimal revenue extractable from
the original bidders.1 Therefore, to retain a constant fraction of the optimal revenue, the number

1In fact, it extracts at least 1

10
of the optimal ex ante revenue from the original bidders.
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of duplicate bidders needed in the non-i.i.d. setting is in fact no more than in the i.i.d. setting.
Our analysis parts ways from the very beginning with that by Hartline and Roughgarden, who

use the Myersonian “virtual surplus” as an (exact) upper bound on the optimal revenue without
duplicates. Instead, we work with the looser bound given by the ex ante optimal revenue. The
looseness of this bound is compensated by the ease with which it allows connections to be drawn
between the optimal revenue and values (or prices) in bidders’ distributions, and all such quantities
across bidders to be manipulated in a linear fashion. With this, we identify a set of bidders that, in
total, contribute a constant fraction of the ex ante optimal revenue by using high prices (so high as
to be comparable to the optimal revenue). Two observations are in order: (a) if a bidder accepts
a high price with a constant probability, then duplicating this bidder alone suffices for the Vickrey
auction to extract a constant fraction of the optimal revenue; and (b) if there is a high price such
that the sum of probabilities with which bidders take the price is a constant, then the VCG auction
even without duplicates is a constant approximation. A technical lemma (Lemma 3.2) shows that
we must, in fact, be in one of these scenarios. The lemma makes use of regularity and the set of
bidders we identified in the previous step.

Choosing the distribution to duplicate. Naturally, the distribution to be duplicated needs to
be carefully chosen; for instance, if most bidders’ values are constantly 0 or negligible, duplicating
an arbitrary or a random bidder helps little with the revenue. We show several forms of minimal
information that the auctioneer could acquire in order to choose the distribution to duplicate: to
guarantee a constant approximation achieved by the Vickrey auction with a duplicate, it suffices
that the auctioneer knows (approximately) the value of each bidder at a specified quantile; that
is, the auctioneer only needs to know, for each bidder i, what is roughly the value vi such that
with probability q bidder i bids above vi, where q is a fixed probability, say, 0.5. Note that the
approximation ratio may depend on how well the auctioneer can query the value of a bidder at
the specified quantile q as well as the quantile itself. It also suffices if the auctioneer has a single
sample from each distribution albeit with a different constant approximation (see Theorem 3.4).
Our result may be seen therefore as describing a tradeoff between reducing the number of duplicate
bidders and acquiring some minimal knowledge on the value distributions.

We remark that we do not claim that the best use of such prior information is to find a duplicate
and run the Vickrey auction. In fact, with the said types of information, one may run other auctions
for comparable revenue guarantees. For example, with a single sample from each distribution, one
may use the maximum of these samples as an anonymous reserve in the Vickrey auction and
guarantee a 4-approximation [11]. We see the main contribution of this work as conceptually
closing the long-standing gap in the understanding on the number of duplicates needed for the
Vickrey auction to be approximately revenue optimal. The Vickrey auction is fundamental and
ubiquitous, and, partly owing to this, Bulow and Klemperer’s original result is a central link in
the auction literature; our result extends it to non-i.i.d. settings in a spirit close to the original.
The results on choosing the duplicate are natural consequences of our techniques used to prove the
main result.

On the other hand, as we discuss at the end of the paper, the upper bounds we give are unlikely
to be tight; for all that we know, it is possible that a tighter analysis could show the VCG auction
with a duplicate to be a comparable or even better way to utilize the kind of partial information
we discussed. We leave this intriguing question to future work.

k duplicates for k-items auctions with unit demands. We extend our result to k-items
auctions with unit demands, where there are k identical items for sale and each bidder needs only
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one of them. The generalization of the Vickrey auction here is the VCG auction, which sells to
the highest k bidders at the price of the (k + 1)-st highest bid. A simple example shows that one
needs more duplicates to generate any revenue in the VCG auction: let there be one bidder whose
value is 1 and all the other bidders have value 0. Here even if we duplicate all bidders, the VCG
auction still has revenue 0, whereas the optimal revenue is 1. To address this, we need to be allowed
to make multiple duplicates of the same bidder. The above example shows that k duplicates are
necessary for the VCG auction to give any approximation. We show that this is tight: as long as
the bidders’ values are drawn independently from regular distributions, there exists a bidder such
that one may add k duplicates of her to the VCG auction and guarantee a constant fraction of the
optimal revenue without duplicates.

Hartline and Roughgarden [11] addressed the issue in the example in a different way: the VCG
auction may still add only one duplicate for each bidder, but each original bidder and her duplicate
can win at most one item. With this restriction, they show that the VCG auction with a duplicate
for every bidder is again a 2-approximation. We extend our analysis to this scenario as well, and
show that duplicating k bidders suffices for the VCG auction to be a constant approximation, albeit
with a smaller constant. The following example shows the tightness of our result: let k/3 bidders
have value 1 and all other bidders have value 0, then one must duplicate Ω(k) bidders to guarantee
a constant approximation.

Tighter analysis of the Vickrey auction with n duplicates. Since Hartline and Roughgarden
first gave the upper bound of 2 and lower bound of 4

3 on the approximation factor of the Vickrey
auction with n duplicates, it has remained an open question what this factor is in the worst case.
We make progress towards resolving this by showing that for n = 2, 4

3 is the tight bound. We first
give an alternate proof of Hartline and Roughgarden’s original 2-approximation. Our proof uses
the geometry of the so-called revenue curves and lower bounds the revenue of the Vickrey auction
with n duplicates by that of Ronen’s lookahead auction [15], which is known to 2-approximate the
optimal revenue. We then further exploit properties of the Vickrey auction and also switch to
a stronger benchmark, the so-called ex ante optimal revenue. This allows us to identify a small
family of distributions as scenarios; a thorough analysis of these reveals the tight ratio of 4

3 .

Related literature. From the large literature on “simple versus optimal auctions” that followed
Hartline and Roughgarden [11], we point out a few that are closer to our work. Sivan and Syrgkanis
[17] extended Hartline and Roughgarden’s result to distributions that are convex combinations of
regular ones (and the duplicate bidders are drawn from each component regular distribution).
Roughgarden et al. [16] showed a Bulow-Klemperer type result for matching environments. Eden
et al. [7] and Feldman et al. [8] studied, for auctions selling multiple heterogenous items, the number
of duplicate bidders needed for the VCG auction’s revenue to approximate the optimal without
duplicates. The bidders’ preferences are i.i.d. drawn, and the non-trivial number of duplicates
needed is a consequence of multi-dimensional preferences rather than asymmetry among bidders.

Our results on the minimal information needed to choose the bidder to duplicate also place the
work in the literature on prior-independent mechanisms [e.g. 2, 6, 9, 5]. In particular, we show in
Theorem 3.4 that a single sample in our setting also suffices to choose the duplicate.

Organization of the paper In Section 2 we set up the model formally and give preliminaries.
In Section 3 we show our result on duplicating few bidders, first for single-item auctions and then
for k-items auctions with unit demands in Section 4. In Section 5 we show our tighter analysis for
the auction with n duplicated bidders. We conclude with some discussion in Section 6.
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2 Preliminaries

Single-item auctions. A single item is to be sold to n bidders. Each bidder i values the item
at vi, which is private to i and independently drawn from a publicly known distribution Fi. We
use Fi interchangably as both the distribution of bidder i’s value as well as the cumulative density
function (cdf) of the distribution, i.e. Fi(w) = Pr[vi ≤ w]. We will also use the notation v =
(v1, . . . , vn) for the vector containing the values of all bidders and v−i = (v1, . . . , vi−1, vi+1, . . . , vn)
for the vector excluding bidder i’s value.

A selling mechanism consists of an allocation rule x(v) = (x1(v), . . . , xn(v)), and a payment
rule p(v) = (p1(v), . . . , pn(v)), where xi(v) ∈ [0, 1] indicates the probability that bidder i receives
the item when the bid vector is v, and pi(v) ∈ R indicates the amount that bidder i must pay.
The utility of bidder i is quasi-linear, given by ui = xi(v)vi − pi(v). Note that we must enforce the
condition

∑

i xi(v) ≤ 1 for all v as there is only one item for sale.
A mechanism is said to be dominant strategy incentive compatible (DSIC) if for all i, any value

profile v, it holds that for any deviation v′i, we have

xi(v)vi − pi(v) ≥ xi(v
′
i,v−i)vi − pi(v

′
i,v−i). (1)

A mechanism is said to be Bayesian incentive compatible (BIC) if for any i, any value vi and any
deviation v′i, we have

Ev−i
[xi(vi,v−i)vi − pi(vi,v−i)] ≥ Ev−i

[

xi(v
′
i,v−i)vi − pi(vi,v−i)

]

. (2)

A mechanism is said to be ex-post individually rational (IR) if a bidder’s utility is always nonneg-
ative, i.e. for all i and v, we have

xi(v)vi − pi(v) ≥ 0. (3)

As will be clear in the summary of Myerson’s work below, for our purpose there is no need
to make a distinction between DSIC and BIC. Without loss of generality, we focus in this work
on DSIC and ex-post IR mechanisms. In such mechanisms, one may assume that bidders bid
truthfully. The revenue of a mechanism is then Ev[

∑

i pi(v)].

Myerson’s characterization of optimal mechanisms. Myerson [14] completely characterized
the revenue of incentive compatible auctions:

Lemma 2.1 (Myerson [14]). 1. The payment rule of any BIC mechanism is uniquely deter-
mined by its allocation rule up to a constant. With this, a mechanism is BIC if and only if
its allocation rule xi(vi,v−i) for each i is monotone nondecreasing in vi for any v−i.

2. For any BIC mechanism with allocation rule x, its expected revenue, up to a constant, is
given by Ev[

∑

i xi(vi)ϕi(vi)], where ϕi(vi) := vi −
1−Fi(vi)
fi(vi)

is called the virtual value of vi.

3. There exists a DSIC and ex-post IR mechanism that is revenue optimal amongst all BIC and
ex-post IR mechanisms.

Throughout the paper, we fix the constant so that the lowest type in the support has expected
utility 0.

A distribution is regular if the virtual value ϕ(v) is monotone nondecreasing in v. Given
the characterization, it is immediate that, for regular distributions, the revenue-optimal auction
allocates to the bidder with the highest virtual non-negative value; if all virtual values are negative,
the item is not sold. We will refer to the revenue of Myerson’s optimal auction as the optimal
revenue.

4



Revenue curves. Bulow and Roberts [4] gave an influential reinterpretation of Myerson’s char-
acterzation, and we will use heavily this interpretation. Given a bidder whose value is drawn from
distribution F , for every take-it-or-leave-it price p, she will buy with probability 1− F (p), thereby
generating revenue p(1 − F (p)). Let q(p) := 1 − F (p) be the probability of selling at p, and call
it the quantile of p. The plot of revenue Rev(q) := q · F−1(1 − q) against q ∈ [0, 1] is called the
revenue curve of the distribution. With a slight overloading of notation, for a quantile q we denote
by v(q) := F−1(1− q) its corresponding value.

It is without loss of generality to assume that Rev(0) = Rev(1) = 0.2 The most important
fact about the revenue is that the derivative of Rev(q) at quantile q is equal to the virtual value
of v(q). In this paper, we do not appeal to this connection other than the curve’s concavity for
regular distributions.

The highest point of a revenue curve gives the maximum revenue extractable from a bidder by
posting a take-it-or-leave-it price. This price is called the monopoly reserve for the bidder. For
bidder i we denote this by r∗i . When there is a single bidder in an auction, the revenue yielded by
posting r∗ is in fact the optimal revenue, by Myerson’s characterization.

The Vickrey Auction. In the Vickrey auction (a.k.a. the second price auction), the item is
allocated to the bidder with the highest value, who is then charged the bid of the second highest
bidder. Vickrey [18] showed that this auction is DSIC and ex-post IR.

Auctions with duplicate bidders and Bulow-Klemperer type results. In general, the rev-
enue of the Vickrey auction can be far from the optimal revenue. Bulow and Klemperer [3] showed
that, when bidders’ values are drawn i.i.d. from a regular distribution, the second price auction, by
recruiting one additional bidder (called a duplicate bidder), could reverse the comparison:

Theorem 2.2 (Bulow and Klemperer [3]). Let OPT be the optimal revenue for an n bidder, single-
item auction where each bidder’s value is drawn independently from an identical regular distribution.
Then the expected revenue of the second price auction with n+1 independent bidders from the same
distribution is at least OPT.

Hartline and Roughgarden [11] extended this theorem in an approximate manner to settings
where bidders’ values are independently but not identically drawn:

Theorem 2.3 (Hartline and Roughgarden [11]). Let OPT be the optimal revenue extractable in
an auction with n bidders where bidder i’s value is drawn independently from a regular distribution
Fi. The expected revenue of the second price auction with 2n bidders, where the values of bidder i
and n+ i are independently drawn from Fi, is at least 1

2 OPT.

Hartline and Roughgarden also gave an example with n = 2 in which the Vickrey auction with
2n bidders extracts a revenue that is 3

4 OPT. We recall this example in Section 5.

Lookahead auction. The lookahead auction, first devised and analyzed by Ronen [15], offers
a technical tool to analyze auctions. At a bid profile v, the lookahead auction first identifies the
highest bidder, say i∗, then offers the item to i∗ at the optimal posted price for i∗ conditioned on
v−i and the fact vi∗ ≥ maxj 6=i vj.

Theorem 2.4 (Ronen [15]). The lookahead auction is a DSIC, ex-post IR mechanism whose revenue
2-approximates the optimal revenue.

2See, e.g. Appendix A of Fu et al. [9] for an argument.
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Ex ante optimal revenue. Almost all approximation results we present in this paper are in
fact with respect to the ex ante optimal revenue, a benchmark that is usually strictly stronger than
the optimal revenue. Given regular distributions with revenue curves Rev1, · · · ,Revn, the ex ante
optimal revenue is the value of the following program:

max

n
∑

i=1

Revi(qi)

s.t.
n
∑

i=1

qi ≤ 1.

(4)

We denote by q̃1, . . . , q̃n the optimal solution to this program. We refer the reader to Hartline [10]
for an exposition that the ex ante optimal revenue upper bounds the optimal revenue.

k-Items Unit-Demand Auctions. In a k-items unit-demand auction, there are k identical
items to sell, and each bidder wants at most one item. Each bidder’s value for an item is, as before,
drawn independently. All the notions defined above carry over to this setting, with minimal change
as follows: the feasibility constraint on the allocation rule now becomes, for all v,

∑

i xi(v) ≤ k,
and 0 ≤ xi(v) ≤ 1, for all i. The generalization of the Vickrey auction in this setting is the VCG
auction, which allocates the items to the k highest bidders, and then charges each winner the
(k+1)-st highest bid. In the program that defines the ex ante optimal revenue, the constraint now
becomes

∑

i qi ≤ k, and qi ≤ 1 for all i. Myerson’s characterization (Lemma 2.1) still holds, and
the revenue-optimal auction allocates the items to at most k bidders with the highest non-negative
virtual values.

As we explained in the introduction, in order for VCG with duplicates to be approximately
revenue optimal, one needs the further restriction that an original bidder and her duplicate should
never both win an item. With this modification, Hartline and Roughgarden showed:

Theorem 2.5 (Hartline and Roughgarden [11]). Let OPT be the optimal revenue extractable in
a k-items auction with n unit-demand bidders whose values are independently drawn from regular,
non-identical distributions. The expected revenue of the VCG auction with every bidder duplicated
is at least half of OPT.

In fact, Hartline and Roughgarden showed a more general result for matroid settings. As we
discuss in the conclusion, we leave the question open whether our result for k-items auctions can
be extended to general matroids.

3 The Vickrey Auction with a Single Duplicate Bidder

3.1 Warm-up: a loose bound for single-item auctions

We illustrate in this section the main ideas behind our result on single-duplicate auctions and prove
a 40-approximation. In Section 3.2, we optimize the parameters and get an approximation ratio
better than 10.

Let {q̃i}i∈[n] be the optimal solution to the ex ante relaxation and let OPT denote the optimal
value of the ex ante relaxation. In the case where vi(1/4) ≥ OPT /2 for some i, posting a price
of OPT /2 to bidder i obtains a revenue of at least OPT /8. Hence, Bulow-Klemperer’s Theorem
(Theorem 2.2) implies that running a second-price auction with only two copies of bidder i already
obtains a revenue of at least OPT /8; introducing additional bidders only weakly increases that
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revenue and therefore in this case the SPA with bidder i duplicated obtains a revenue of at least
OPT /8.

Henceforth, we may assume vi(1/4) < OPT /2 for all i. We show that in this case the SPA
without duplicates in fact already obtains an O(1)-approximation of the optimal revenue (and
introducing bidders never hurts the revenue). Let S be {i : vi(q̃i) ≥ OPT /2}. Intuitively, bidders
not in S have low prices in the optimal ex ante solution, and altogether contribute at most a
constant fraction in the ex ante optimal. Specifically,

∑

i/∈S

vi(q̃i)q̃i ≤
OPT

2

∑

i/∈S

q̃i ≤
OPT

2

where the first inequality is because vi(q̃i) ≤ OPT /2 for i /∈ S and the second inequality is because
∑

i/∈S q̃i ≤ 1. Hence,
∑

i∈S

Revi(q̃i) =
∑

i∈S

vi(q̃i)q̃i ≥ OPT /2. (5)

For i ∈ S, define q′i = qi(OPT /2) and notice that q̃i ≤ q′i < 1/4. We show that the sum of q′i’s is
at least a constant, which in turn allows us to show that with constant probability, at least two
bidders in S bid at least OPT /2.

By concavity of the revenue curve (see Claim A.1), we have Revi(q
′
i) ≥ 3

4 Revi(q̃i). Plugging
this bound into Equation (5), we get that

∑

i∈S

vi(q
′
i)q

′
i =

∑

i∈S

Revi(q
′
i) ≥

3

4

∑

i∈S

Revi(qi) ≥
3OPT

8
. (6)

On the other hand, since vi(q
′
i) = OPT /2 (by definition of q′i), we have

∑

i∈S

vi(q
′
i)q

′
i =

OPT

2

∑

i∈S

q′i. (7)

Combining Equation (6) and Equation (7) gives

∑

i∈S

q′i ≥
3

4
. (8)

We now show that with probability Ω(1), at least two bidders bid at least OPT /2. Indeed, let X
be the random variable that counts the number of bidders in S that bid at least OPT /2. Then
Pr[X = 0] =

∏

i∈S(1− q′i) ≤ exp(−
∑

i∈S q′i) ≤ exp(−3/4) and

Pr [X = 1] =
∑

i∈S

q′i
∏

j∈S\{i}

(1− q′j)

≤
∑

i∈S

q′i exp



−
∑

j∈S\{i}

q′j





≤
∑

i∈S

q′i exp



1/4−
∑

j∈S

q′j



 (because 1/4− q′i ≥ 0)

= exp(1/4) ·

(

∑

i∈S

q′i

)

· exp

(

−
∑

i∈S

q′i

)

≤ exp(−3/4),

7



where the last inequality is because the function f(x) = x exp(−x) is maximized at x = 1.3 To
conclude, we have Pr[X ≥ 2] = 1 − Pr[X = 0] − Pr[X = 1] ≥ 1 − 2 exp(−3/4) > 1/20. Hence,
SPA extracts a revenue of at least OPT /40.

3.2 A tighter bound for single-item auctions

We now optimize the parameters in the argument outlined in Section 3.1 and obtain main result
for single-item auctions:

Theorem 3.1. In a single item auction with n bidders whose values are drawn independently from
(non-identical) regular distributions F1, · · · , Fn, there exists i such that the second price auction
with the same n bidders and an additional bidder n+1 whose value is drawn independently from Fi

achieves at least 0.108 fraction of the ex ante optimal revenue with the original n bidders.

Recall from Section 2 that q̃1, . . . , q̃n are quantiles that solve the ex ante revenue maximization
problem with the original n bidders. We use OPT =

∑

i Revi(q̃i) to denote the ex ante optimal
revenue, which upper bounds the optimal revenue (without duplicates).

Lemma 3.2 is the technical heart of the proof. Using regularity, i.e. the concavity of the revenue
curves, it shows that either there is a bidder i who bids a high value with a constant probability,
or the sum of each bidder’s probability of bidding a high value must be large.

Lemma 3.2. Let α, β ∈ [0, 1] be constants. Consider a single item auction with n bidders whose
values are drawn independently from regular distributions F1, . . . , Fn. Let OPT be the ex ante
optimal revenue. Then exactly one of the following statements is true.

1. There exists i ∈ [n] such that vi(β) ≥ α ·OPT.

2. For all i, vi(β) < α ·OPT but
∑

i∈[n] qi(α ·OPT) ≥ 1−α
α · (1− β).

Remark 3.3. The proof will show that if the first condition does not hold in the lemma then the
second condition holds which implies that at least one of the two statements in the lemma is true.
However, the two statements are mutually exclusive so this also implies that exactly one of the
statements is true.

Proof of Lemma 3.2. Let q̃1, . . . , q̃n be an optimal solution to the ex ante relaxation. In particular,
∑n

i=1Revi(q̃i) = OPT. Let S = {i : vi(q̃i) ≥ α · OPT}. Since
∑

i/∈S q̃ivi(q̃i) ≤ α · OPT (because
∑

i/∈S q̃i ≤ 1), we have
∑

i∈S q̃ivi(q̃i) ≥ (1− α) ·OPT.
Suppose that the first statement of the lemma does not hold, i.e. vi(β) < α · OPT for all i.

Recall that qi(·) is a non-increasing function. So for any i ∈ S, q̃i ≤ qi(α ·OPT) ≤ β by definition.
By the concavity of the revenue curve (see Claim A.1), we have Revi(qi(α ·OPT)) ≥ (1−β)Revi(q̃i)
for all i ∈ S. Therefore

∑

i∈S

Revi(qi(α ·OPT)) ≥ (1− β)
∑

i∈S

Revi(q̃i) ≥ (1− β)(1 − α)OPT .

But Revi(qi(α ·OPT)) is just (α ·OPT)qi(α ·OPT). Rearranging, we have
∑

i∈S qi(α ·OPT) ≥
1−α
α · (1− β), as claimed.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let α, β ∈ [0, 1] be constants such that 1−α
α · (1−β) ≥ 1. We will determine

their values later. The proof amounts to analyzing the two cases given in Lemma 3.2.

3 This follows from standard calculus. Indeed, note that f ′(x) = (1− x) exp(−x). Hence, f(x) is non-decreasing
on (−∞, 1] and non-increasing on [1,∞). So x = 1 is the maximizer of f and f(1) = 1/e.
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Case 1: There exists i ∈ [n] such that vi(β) ≥ α · OPT. In this case, posting a price
of vi(β) only to bidder i obtains a revenue of βvi(β) ≥ (αβ) · OPT. Hence, we can apply the
Bulow-Klemperer Theorem (Theorem 2.2) to assert that duplicating bidder i suffices to get an
(αβ)-fraction of the ex ante optimal revenue. Finally, adding the remaining bidders back in can
only increase the revenue so this obtains at least an (αβ)-fraction of the ex ante optimal revenue.

Case 2: For all i, vi(β) < α · OPT but
∑

i∈[n] qi(α · OPT) ≥ 1−α
α · (1 − β). To ease notation,

let q′i := qi(α ·OPT). Also, observe that the condition vi(β) < α ·OPT implies that q′i ≤ β.
In this case, let us duplicate any bidder in argmaxi∈[n] q

′
i, say i∗, and write S′ = [n] ∪ {i∗}.

Now, we will compute the probability that there are at least two bidders who bid at least α ·OPT.
The probability that no bidder bids above α ·OPT is at most

∏

i∈[n]

(1− q′i) ≤ exp



−
∑

i∈[n]

q′i



 ≤ exp

(

−
1− α

α
· (1− β)

)

. (9)

Since we duplicated a bidder in argmaxi∈[n] q
′
i, the probability that exactly one bidder bids at

least α ·OPT is

∑

i∈S′

q′i
∏

j∈S′\{i}

(1− q′j) ≤
∑

i∈S′

q′i exp



−
∑

j∈S′\{i}

q′j





≤
∑

i∈S′

q′i exp



−
∑

j∈[n]

q′j



 (since q′i∗ ∈ argmax
j∈S

q′j)

=

(

∑

i∈S′

q′i

)

· exp



−
∑

i∈[n]

q′i





≤

(

β +
1− α

α
· (1− β)

)

· exp

(

−
1− α

α
· (1− β)

)

(since q′i∗ ≤ β),

(10)

where the last inequality uses the assumption that 1−α
α · (1− β) ≥ 1 and the function x exp(−x) is

decreasing for x ≥ 1. Define

η = 1−

(

1 + β +
1− α

α
· (1− β)

)

· exp

(

−
1− α

α
· (1− β)

)

,

which is the probability that at least two bidders bid at least α ·OPT. We have shown that one can
always duplicate one bidder to obtain in the Vickrey auction an αmin{β, η}-fraction of the optimal
revenue. Choosing α = 0.27 and β = 0.4 and verifying 1−α

α · (1 − β) is indeed greater than 1, we
complete the proof of Theorem 3.1.

3.3 Choosing the distribution to duplicate

Bulow and Klemperer’s result and the extension by Hartline and Roughgarden are also seen as
prototypical results in prior-independent mechanism design. These results guarantee performances
of “detail-free” auctions, such as the Vickrey auction, as long as the underlying distribution satisfies
some mild property. As we pointed out in the Introduction, one may not duplicate a single bidder
with complete ignorance on the value distributions, since arbitrary or uniformly random duplication
easily fails. We show in this section that the information requirement for choosing the duplication is
resilient and minimal. We give a few variants of the forms of information sufficient for our purpose.
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Theorem 3.4. Consider a single item auction with n bidders whose values are drawn independently
from (non-identical) regular distributions F1, . . . , Fn. Let OPT be the ex ante optimal revenue for
this setting.

1. Suppose for some β ∈ [0, 1], the auctioneer has access to Revi(β) (or equivalently, vi(β)) for
all i. Then, by duplicating any bidder i that maximizes Revi(β) and running the Vickrey
auction on the n + 1 bidders, the auctioneer can extract a revenue of at least c1(β) · OPT,
where c1(β) is a constant depending only on β. In particular, c1(0.355) ≥ 0.099.

2. More generally, suppose that the auctioneer has access to the following oracle for each bidder i
for some β ∈ [0, 1/2], ǫ ∈ [0, 1]: the oracle returns Revi(β

′
i) with the promise that |β′

i−β| ≤ ǫβ.
Then, by duplicating any bidder i that maximizes Revi(β

′
i) and running the Vickrey auction

on the n + 1 bidders, the auctioneer can extract a revenue of at least c2(β, ǫ) · OPT, where
c2(β, ǫ) is a constant depending only on β and ǫ. Moreover, c2(β, ǫ) ≥ (1 − ǫ)c1(β) where
c1(β) is the constant as from part 1.

3. Suppose that the auctioneer can draw a sample si, independently, from each distribution Fi.
Then duplicating any bidder in argmaxi si and running VCG on the resulting n + 1 bidders
yields 0.044 fraction of the ex ante optimal revenue.

As we emphasized in the Introduction, revenue-wise, running a Vickrey auction with a duplicate
may not be the best way to use the forms of prior information in Theorem 3.4, but the Vickrey
auction has the advantage of being simple and anonymous, and may be particularly useful when
individual reserve prices cannot be placed. We see Theorem 3.1 as the main result of this work,
and Theorem 3.4 as a natural consequence of our techniques.

Proof of Theorem 3.4 part 2. We prove part 2 directly, and part 1 is implied by the proof.
Let α ∈ [0, 1] be any constant that satifies (1−α)(1−β)/α ≥ 1. As in the proof of Theorem 3.1,

we analyze the two cases given by the conclusion of Lemma 3.2.

Case 1: There exists i ∈ [n] such that vi(β) ≥ α ·OPT. Let i∗ ∈ argmaxi∈[n]Revi(β). Since
we duplicate a bidder in argmaxi∈[n]Revi(β

′
i), say j, we can apply the Bulow-Klemperer Theorem

(Theorem 2.2) to assert that second price auction with only bidder j already obtains a revenue of
at least Revj(βj). However, note that Revj(β

′
j) ≥ Revi∗(β

′
i∗) ≥ (1− ǫ)Revi∗(β) ≥ (1− ǫ)αβ OPT,

where the second inequality uses Claim A.2.

Case 2: For all i, vi(β) < α · OPT but
∑

i∈[n] qi(α · OPT) ≥ 1−α
α · (1 − β). To ease notation,

let q′i := qi(α · OPT). In this case, we will show that the probability that at least two bidders bid
at least α ·OPT is quite high even if we do not duplicate any bidder. Indeed, the probability that
no bidder bids at least α ·OPT is

∏

i∈[n]

(1− q′i) ≤ exp



−
∑

i∈[n]

q′i



 ≤ exp

(

−
1− α

α
· (1− β)

)
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and the probability that exactly one bidder bids at least α ·OPT is

∑

i∈[n]

q′i
∏

j∈[n]\{i}

(1− q′j) ≤
∑

i∈[n]

q′i exp



−
∑

j∈[n]\{i}

q′j





≤
∑

i∈[n]

q′i exp



β −
∑

j∈[n]

q′j



 (since q′i ≤ β for all i)

=





∑

i∈[n]

q′i



 · exp



β −
∑

i∈[n]

q′i





≤

(

1− α

α
· (1− β)

)

exp(β) · exp

(

−
1− α

α
· (1− β)

)

.

(11)

Here, we assume that
(

1−α
α · (1− β)

)

≥ 1 and that x · exp (x) is non-increasing on [1,∞). Hence,
the probability that at least two bidders bid above α ·OPT is at least

η(α, β) = 1−

(

1 +
1− α

α
· (1− β)

)

exp(β) · exp

(

−
1− α

α
· (1− β)

)

.

Hence, the revenue without any extra bidders is at least αη(α, β)OPT, so if we add any duplicate,
we are still guaranteed at least this quantity.

Combining the two cases implies that we obtain a revenue of at least α·min{(1−ǫ)β, η(α, β)}OPT.
In particular, one can take

c(β, ǫ) = max
α∈[0,1]:(1−α)(1−β)/α≥1

α ·min{(1− ǫ)β, η(α, β)},

completing the proof.

Proof of Theorem 3.4, part 3. Let α, β, γ ∈ (0, 1) be constants. For technical reasons, we also need
that (1− α)(1 − β)/α ≥ 1. As in the proof of Theorem 3.1, we analyze the two cases given by the
conclusion of Lemma 3.2.

Case 1: There exists i ∈ [n] such that vi(β) ≥ α ·OPT. Let H = {i ∈ [n] : vi(β) ≥ α ·OPT}
and L = [n] \H. We break things down into two smaller cases.

Case 1a: Pr[vi ≥ α ·OPT for some i ∈ L] < γ. In this case, with probability at least β(1− γ),
if we draw a single sample from each bidder then the value of the highest sample will be in H.
Conditioned on this event, we duplicate a bidder in H and obtain a revenue of at least (αβ) ·OPT.
So in this case, we get at least (αβ2(1− γ)) ·OPT.

Case 1b: Pr[vi ≥ α ·OPT for some i ∈ L] ≥ γ. In this case, even if we do not duplicate any
bidders, the probability that at least two bidders bid at least α · OPT is at least βγ. Hence, the
second price auction already extracts at least (αβγ) ·OPT.

Case 2: For all i, vi(β) < α · OPT but
∑

i∈[n] qi(α · OPT) ≥ 1−α
α · (1 − β). In this case, the

argument is identical to that of part 2 of Theorem 3.4. Let η(α, β) be as in the proof of part 2.
Putting all the cases together, we see that this mechanism achieves a revenue of at least α ·

min{β2(1 − γ), βγ, η(α, β)} · OPT. Choosing α = 0.26, β = 0.51, γ = 0.34 yields a revenue of at
least 0.0446OPT.
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4 The VCG Auction with k Duplicates in k-Items Auctions

In this section we describe our results for k-items auctions with unit demand bidders. The gener-
alization of the Vickrey auction in this setting is the VCG auction, as we explained in Section 2.
Again we will show that, in order for the VCG auction to secure a constant fraction of the optimal
auction’s revenue, one needs to duplicate far fewer bidders than required by Theorem 2.5. However,
one must think carefully about conditions that should be imposed on the duplication environment.
As we showed in the Introduction, the example with one bidder having value 1 and all other bidders
having value 0 shows that even if one duplicates all bidders, the VCG auction still has revenue 0
whereas the optimal revenue is 1.

The VCG auction therefore needs more power in this setting than simply duplicating bidders at
most once. We study two settings that grant the VCG auction different powers. In the first setting,
which we deem more natural and term as the “free” setting, the VCG auction may duplicate the
same bidder more than once. In the example above, it is easily seen that the VCG auction needs
to duplicate the same bidder at least k times to be a constant approximation. Our main theorem
in this section shows that duplicating k bidders is sufficient.

Theorem 4.1. In a k-item auction with n unit demand bidders whose values are drawn inde-
pendently from (non-identical) regular distributions F1, . . . , Fn, there exists i such that the VCG
auction with the same n bidders and additional bidders n+1, . . . , n+ k whose values are drawn in-
dependently from Fi achieves at least 0.009 fraction of the ex ante optimal revenue with the original
n bidders.

We relegate the proof of Theorem 4.1 to Subsection 4.1. Although the proof follows a similar
structure to the proof of Theorem 3.1, there are some subtleties that one needs to take into account.
First, it is not difficult to see that if there are a small number of bidders that are high bidders or
the probability that many bidders bid above a certain threshold is large then one can extract a
large fraction of the revenue. The tricky part is to deal with the middle ground: when there is
no bidder with high revenue and it is not often the case that many bidders bid above a certain
threshold. In this case, we show that the expected number of high bids is large from which the
desired result will follow from an application of a theorem due to Hoeffding [12].

The second setting was introduced by Hartline and Roughgarden [11], which we term as “con-
strained”. Here the VCG auction can only duplicate each bidder at most once, but each original
bidder and her duplicate can win at most one item. With this constraint, in the example above,
with the first bidder duplicated, the VCG auction recovers the optimal revenue. The following ex-
ample shows that Ω(k) duplicates are necessary, even with the additional constraint, for the VCG
auction to recover a constant fraction of the optimal revenue: k/3 bidders have value 1, and the
rest of the bidders have value 0. The optimal revenue here is k/3, and the VCG auction’s revenue
is equal to the number of duplicates it recruits. We show that this is the worst case: k duplicates
always suffices for the VCG auction to extract a constant fraction of the optimal revenue.

Theorem 4.2. Let OPT be the ex ante optimal revenue in a k-items auction with n unit-demand
bidders with values drawn independently from regular (non-identical) distributions. There exist k
bidders such that the VCG auction with a duplicate of each of these k bidders, where at most one
of an original bidder and her duplicate can win an item, extracts revenue that is at least 0.1OPT.

We relegate the proof of Theorem 4.2 to Subsection 4.2. Let us also remark that in this setting,
we can also obtain an analagous result to Theorem 3.4. We relegate the details to Appendix B.

The proofs of Theorem 4.1 and Theorem 4.2 both make use of the following analog of Lemma 3.2
for k-item auctions.
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Lemma 4.3. Let β, γ, δ ∈ (0, 1) be contants that satisfy (1−γ)(1−β)−δ
γ ≥ 3

2 . In a k-items auction with
n unit demand bidders whose values are drawn independently from regular distributions F1, . . . , Fn

at least one of the following three statements must be true:

1. There exists q1, . . . , qn ∈ [β, 1) and a set H ⊆ [n] with |H| ≤ k such that vi(β) ≥
γ
k OPT for

all i ∈ H and
∑

i∈H Revi(qi) ≥ δ ·OPT.

2. There exists a set H ⊆ [n] with |H| = k such that vi(β) ≥
γ
k OPT.

3. With probability 1/2, at least k + 1 bidders bid at least γ
k OPT.

Proof. Assume that the first two statements do not hold. Let {q̃i}
n
i=1 be an optimal solution to the

ex ante relaxation and S = {i ∈ [n] : vi(q̃i) ≥
γ
k OPT}. Then

∑

i/∈S Revi(q̃i) ≤ γOPT because
∑

i/∈S q̃i ≤ k. Hence,
∑

i∈S Revi(q̃i) ≥ (1− γ) ·OPT.
For i ∈ S, define q′i as follows. If q̃i > β then set q′i = q̃i but note that vi(β) ≥ vi(q

′
i) ≥

γ
k OPT

since vi(·) is decreasing in [0, 1]. Otherwise, set q′i = min{β, 1 − Fi(
γ
k OPT)}. Note that if q′i < β

then vi(q
′
i) =

γ
k OPT.

If q′i ≤ β then Claim A.1 implies that Revi(q
′
i) ≥ (1 − β)Revi(q̃i) and if q′i > β then q′i = q̃i

so Revi(q
′
i) = Revi(q̃i). Hence

∑

i∈S Revi(q
′
i) ≥ (1 − γ)(1 − β) · OPT. Let S′ = {i ∈ S : vi(β) ≥

γ
k OPT}. If i /∈ S′ we have vi(β) < γ

k OPT, which means that q′i ≤ β (if q′i > β then q′i = q̃i). If
q′i = β, then vi(q

′
i) < γ

k OPT because i /∈ S′. Otherwise, vi(q
′
i) = vi

(

1− Fi(
γ
k OPT

)

= γ
kOPT .

Hence, for i 6 inS′, we have vi(q
′
i) ≤

γ
k OPT. Since the second item in the claim does not hold, we

have |S′| < k. Since the first item in the claim does not hold, we have

∑

i∈S\S′

Revi(q
′
i) =

∑

i∈S

Revi(q
′
i)−

∑

i∈S′

Revi(q
′
i) ≥ ((1− γ)(1− β)− δ)OPT .

As we observed above, vi(q
′
i) ≤

γ
k OPT for all i ∈ S \ S′. Plugging this into the above inequality

with the fact that Revi(q
′
i) = q′ivi(q

′
i) gives

∑

i∈S\S′

q′i ≥ k ·
(1− γ)(1 − β)− δ

γ
≥

3k

2
,

where the last inequality is an assumption made in the claim.
Let X be the number of bidders in S \ S′ that bid at least γ

k OPT. Then E[X] ≥
∑

i∈S\S′ q′i ≥
3k
2 ≥ k + 1 since k ≥ 2. By Theorem A.3 and Fact A.4, we have that the probability that at least
k + 1 bidders in S \ S′ bid at least γ

k OPT is at least 1/2.

4.1 Proof of Theorem 4.1

Proof of Theorem 4.1. Let β, γ, δ ∈ (0, 1) be constants to be chosen later. We will consider the
three cases in the conclusion of Lemma 4.3.

Case 1: There exists q1, . . . , qn ∈ [β, 1) and a set H ⊆ [n] with |H| ≤ k such that
∑

i∈H Revi(qi) ≥ δ · OPT. By shuffling the indices, we may assume without loss of generality

that Rev1(q1) ≥ . . . ≥ Revn(qn). Let r ≤ k be such that Revi(qi) ≥ δOPT
2k for all i ≤ r and

Revi(qi) <
δOPT
2k for i ∈ {r + 1, . . . , k}. Then

∑r
i=1Revi(qi) ≥

δOPT
2 because

∑k
i=r+1 Revi(qi) <

k δOPT
2k = δOPT

2 .

Define Ri =
Revi(qi)
OPT . We will consider two subcases based on the value of R1.
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Case 1a: R1 ≥ δ
4 . First, note that v1(1 − 1/k) ≥ δ

4k OPT. To see this, if q1 > 1 − 1/k then

v1(1 − 1/k) ≥ v1(q1) ≥ Rev1(q1) ≥ δ
4 OPT. On the other hand, if q1 ≤ 1 − 1/k then Claim A.1

implies that Rev1(1− 1/k) ≥ Rev1(q1)/k ≥ δ
4k OPT and hence v1(1− 1/k) ≥ δ

4k OPT.
Now suppose we obtain k duplicates of bidder 1. The probability that any one of them bids above

δ
4k OPT is at least 1−1/k so the probability that all k+1 of them do is at least (1−1/k)k+1 ≥ 1/8

since k ≥ 2. Hence, VCG extracts a revenue of at least δOPT
32 .

Case 1b: R1 ≤
δ
4 . We begin with the following claim which gives a lower bound on the probability

that a bidder bids above a threshold of δOPT
8k .

Claim 4.4. For all i ∈ [r], we have vi

(

1− δ
8kRi

)

≥ δOPT
8k .

Proof. Suppose first that qi > 1− δ
8kRi

. Then since vi(·) is non-increasing on [0, 1], we have

vi

(

1−
δ

8kRi

)

≥ vi(qi) ≥ Revi(qi) ≥
δOPT

2k

where the last inequality is by definition of r.
On the other hand, suppose that qi ≤ 1− δ

8kRi
. Then we can apply Claim A.1 to get that

Revi

(

1−
δ

8kRi

)

≥
δ

8kRi
Revi(qi) =

δOPT

8k
.

Consequently, vi

(

1− δ
8kRi

)

≥ δOPT
8k .

Consider obtaining k duplicates of bidder 1. Let X be the number of bidders amongst the
original r bidders and the k duplicates that bid at least δOPT

8k . Then

E [X] ≥ k

(

1−
δ

8kR1

)

+
r
∑

i=1

(

1−
δ

8kRi

)

≥ k −
δ

8R1
+

3r

4
,

where the last inequality is because Ri ≥
δ
2k for 1 ≤ i ≤ r so 1− δ

8kRi
≥ 3

4 . It now remains to lower
bound r.

Claim 4.5. r ≥ δ
2R1

.

Proof. Indeed, we have

r =
r
∑

i=1

Ri
1

Ri
≥

1

R1

r
∑

i=1

Ri ≥
δ

2R1
.

The first inequality is because Ri ≤ R1 for all i. The second inequality is because
∑r

i=1 Revi(qi) ≥
δOPT

2 is equivalent to
∑r

i=1Ri ≥
δ
2 .

Hence, we have

E [X] ≥ k −
δ

8R1
+

3r

4
≥ k −

δ

8R1
+

3δ

8R1
= k +

δ

4R1
.

Since R1 ≤ δ/4, we have that E[X] ≥ k + 1.
Now observe that X is a sum of independent Bernoulli random variables, albeit with non-

identical means. Combining Theorem A.3 and Fact A.4, we conclude that at least k + 1 bidders
bid at least δOPT

8k with probability at least 1/2. Hence, in this case VCG obtains a revenue of at

least δOPT
16 .
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Case 2: There exists a set H ⊆ [n] with |H| = k such that vi(β) ≥ γ
k OPT. Note that

for i ∈ H, we have Revi(β) ≥ βγ
k OPT. We claim that this implies vi(3/4) ≥ βγOPT

3k . Indeed, if

β ≥ 3/4 then vi(3/4) ≥ vi(β) = Revi(β)/β ≥ Revi(β) ≥
βγ
k OPT. On the other hand, if β ≤ 3/4

then Revi(3/4) ≥
βγ
4k OPT by Claim A.1. Hence, vi(3/4) =

Revi(3/4)
3/4 ≥ βγOPT

3k .
Now consider obtaining k duplicates of any bidder in H. Then the average number of bidders

from H and the duplicates that bid at least βγOPT
3k is at least 3

4 · 2k = 3k
2 ≥ k+1. By Theorem A.3

and Fact A.4 again, this implies that VCG obtains a revenue of at least βγ
6 OPT.

Case 3: With probability at least 1/2 there exists at least k + 1 bidders who bid at

least
γ
k OPT. The assumption implies that VCG without duplicates already obtains a revenue of

at least γ
2 OPT; duplicating bidders will never hurt the revenue.

Let A =
{

(β, γ, δ) : (1−γ)(1−β)−δ
γ ≥ 3

2

}

. Putting all the cases together, we get the revenue of

VCG with k duplicates is at least

OPT · max
(β,γ,δ)∈A

min

{

δ

32
,
βγ

6
,
γ

2

}

.

By setting β = 0.377, δ = 0.3, γ = 0.15, we see that this is at least 0.009 ·OPT.

Remark 4.6. One can also modify the above proof so that the choice of the bidder is independent
of k, albeit with a decay in the approximation factor.

Indeed, notice that in case 1 of the above proof, one can duplicate any bidder in

argmax
i∈[n]

max
qi∈[β,1]

Revi(qi)

and that this choice is independent of k. By reordering, suppose that bidder 1 is in the argmax of
the previous expression.

Note that it may not be the case that v1(β) ≥ γ
k OPT so we may not be able to duplicate

bidder 1 in case 2 of the above proof. However, if q∗1 ∈ argmaxq1∈[β,1]Rev1(q1) then Rev1(q
∗
1) ≥

maxi∈[n]Revi(β) ≥
βγ
k OPT. Hence,

v1(β) ≥ v1(q
∗
1) ≥ q∗1v1(q

∗
1) = Rev1(q

∗
1) ≥

βγ

k
OPT .

So one can repeat the argument in case 2 of the above proof with a set H ⊆ [n] and |H| = k such
that 1 ∈ H and vi(β) ≥ βγ

k OPT for all i ∈ H. Since we can duplicate any bidder in H, we can

duplicate bidder 1 as well which would give β2γ
6 -approximation.

Case 3 of the above proof remains unchanged.

Hence, the approximation ratio is at least min
{

δ
32 ,

β2γ
6 , γ2

}

(provided that β, γ, δ satisfy the

conditions of Theorem 4.1). Choosing β = 0.4, δ = 0.2, γ = 0.19 gives an approximation ratio of
> 0.005.

4.2 Proof of Theorem 4.2

Proof of Theorem 4.2. We will consider the three cases in the conclusion of Lemma 4.3.
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Case 1: There exists q1, . . . , qn ∈ (0, 1) and a set H ⊆ [n] with |H| ≤ k such that
∑

i∈H Revi(qi) ≥ δ · OPT. Suppose we duplicate every bidder in H and run VCG with just
these bidders and their duplicates, while ensuring that a bidder and her duplicate do not both win.
In this setting, the VCG auction simply runs a single-item second-price auction for each pair. Ob-
serve that if the auctioneer had posted a price of Revi(qi)/qi = vi(q) for bidder i then the revenue
extracted from bidder i would have been at least Revi(qi). Applying Theorem 2.2, it follows that
the single-item auction with bidder i and her duplicate yields a revenue of at least Revi(qi). Hence,
the revenue of VCG is at least

∑

i∈H Revi(qi) ≥ δ ·OPT.

Case 2: There exists a set H ⊆ [n] with |H| = k such that vi(β) ≥
γ
k OPT. This case is

very similar to the previous case. Again, we duplicate every bidder in H and note that VCG with
only the bidders in H and their duplicates is exactly a single-item second-price auction for each
pair. Since Revi(β) ≥

βγ
k OPT for i ∈ H, we can apply Theorem 2.2 to assert that we extract at

least βγ
k OPT revenue from bidder i or her duplicate. Hence, the total revenue is at least βγOPT.

Case 3: With probability at least 1/2 there exists at least k+1 bidders who bid at least
γ
k OPT. In this case, the VCG mechanism without duplicates already gets a γ/2 fraction of the ex
ante optimal revenue with the original n bidders. Now observe that VCG with the original n bidders
and their duplicates (with the constraint that a bidder and her duplicate cannot simultaneously
win) earns at least as much revenue of VCG for the original n bidders. Hence, VCG in the duplicate
setting also achieves at least γ/2 fraction of the ex ante optimal revenue.

Choosing β = 0.5, δ = 0.1, γ = 0.2 and checking that (1−γ)(1−β)−δ
γ = 3

2 gives the desired bound
of 0.1 ·OPT.

5 Tighter Analysis for the Second Price Auction with n Single

Duplicated Bidders

In this section, we strengthen Theorem 2.3 [11] in another direction.

Theorem 5.1. Consider an auction with 2 bidders with v1, v2 drawn independently from regular
distributions F1 and F2. Let OPT be the ex ante optimal revenue. The expected revenue of the
Vickrey auction with 4 bidders, with v1, v3 drawn from F1 and v2, v4 from F2, all independently, is
at least 3

4 OPT.

The proof of Theorem 5.1 appears in Subsection 5.2. This ratio matches a lower bound given by
Hartline and Roughgarden [11] (see Example 5.5), and therefore is tight for n = 2. We first show
that the Vickrey auction with n duplicates generates at least as much revenue as the lookahead
auction without the duplicates. We will use the following auction as a middle step, whose revenue
obviously lower bounds the Vickrey auction with duplicates.

Definition 5.2 (The Second Price Auction with Late Duplicate (SPALD)). Solicit bids from bid-
ders 1 to n, and let i∗ be the highest bidder among them. Then run the second price auction for
bidders 1, 2, . . . , n and n+ i∗.

Lemma 5.3. Let LA denote the revenue of the lookahead auction with n bidders, where each
bidder i’s value is independently drawn from a regular distribution Fi. The Vickrey auction with n
duplicates extracts a revenue at least as much as LA.
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The proof of Lemma 5.3 is in Subsection 5.1. It draws ingredients from both Ronen [15]’s analysis
of the lookahead auction and Dhangwatnotai et al. [6]’s use of the revenue curve.4 Conditioning
on v−i, the profile of values except bidder i’s, it expresses SPALD’s revenue from bidder i and
her duplicate in terms of an area under a curve closely related to bidder i’s revenue curve. The
comparison with the lookahead auction’s revenue then follows from the concavity of the curve.

Remark 5.4. Theorem 2.4 and Lemma 5.3 can be used to give a short and transparent proof
of Theorem 2.3. Indeed, Theorem 2.4 asserts that the revenue of the lookahead auction is a 2-
approximation to the optimal revenue and Lemma 5.3 implies that the Vickrey auction with n
duplicates extracts at least as much revenue as the lookahead auction. Hence, the Vickrey auction
with n duplicates is a 2-approximation to the optimal revenue with the original n bidders.

To prove Theorem 5.1, we again switch our benchmark to the stronger ex ante optimal revenue.
It was observed in Alaei et al. [1] that, given an optimal solution q̃1, . . . , q̃n to the ex ante revenue
maximization problem, the solution remains the same if one were to replace the revenue curves by
triangles that each peaks at q̃i with revenue Revi(q̃i). On the other hand, for the Vickrey auctions,
the triangle revenue curves are also the worst-case distributions (Lemma C.2). This allows us to
focus on triangle revenue curves and then analytically minimize the ratio between the SPALD’s
revenue and the ex ante optimal revenue.

We recall the example from Hartline and Roughgarden [11] showing that this ratio is tight for
n = 2:

Example 5.5. Let F1 be the point mass on v1 = 1, and let F2 be the “slanted” equal revenue
distribution F2(v) = 1 − 1

v+1 . If we offer a price of H ≫ 1 to bidder 2 and, if not taken, offer a
price of 1 to bidder 1 then we obtain a revenue of H/(H + 1) + 1− (1/(H + 1)) ≈ 2. On the other
hand, in the second price auction with duplicates of each distribution, if we denote by w the second
highest value, then the revenue is

E [w] =

∫ ∞

0
Pr [w ≥ v] dv = 1 +

∫ ∞

1

(

1

v + 1

)2

dv =
3

2
.

Remark 5.6. Note that in Example 5.5, the two revenue curves are two triangle revenue curves
with R1 = R2 = 1, q̃1 = 1 and q̃2 = 0.5

Remark 5.7. Example 5.5 also provides a lower bound on the approximation of the revenue of
the Vickrey auction with a single duplicate which is greater than with both duplicates. Indeed, if
one duplicates only the first bidder, then the resulting Vickrey auction has revenue 1. On the other
hand, duplicating the second bidder extracts revenue strictly less than 1/2. To see this, note that
if both of the duplicates bid strictly less than 1 than the revenue extracted in this case is strictly
less than 1 (whereas if we duplicate both bidders then the revenue would still be 1 in this case).
With more detailed calculations, we show in Appendix C that the revenue is ln 4 and hence, the
approximation ratio is ≈ 1.44. This is the largest gap we know for the Vickrey auction with a single
duplicate.

We believe that the Vickrey auction with n duplicates in general give a 4/3-approximation to the
optimal revenue, although the following example shows that for n > 2 it does not 4/3-approximate
the ex ante optimal revenue.

4In fact, the case n = 1 is the Bulow-Klemperer Theorem for a single bidder for which Dhangwatnotai et al. [6]
gave an elegant proof. The proof of Lemma 5.3 can be seen as generalizing the proof of Dhangwatnotai et al. [6] to
more than a single bidder.

5The point mass can be seen to have a triangle revenue curve peaking at q = 1 by being approximated by a
uniform distribution on [1, 1 + ǫ] with arbitrarily small ǫ.
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Example 5.8. Consider three distributions, the first having a triangle revenue curve peaking at (0,
1) (i.e., having cdf F1(v) = 1 − 1

v+1), and the other two having triangle revenue curve peaking at

(12 ,
1
2). The ex ante optimal revenue is 2, but we show in Appendix C that the Vickrey auction with

3 duplicates has a revenue strictly less than 1.5.

5.1 Proof of Lemma 5.3.

Proof of Lemma 5.3. We say bidder n+ i is bidder i’s duplicate. We will show that SPALD has a
revenue no less than LA. Let us condition on the realization of v1, . . . , vi∗−1, vi∗+1, . . . , vn (which
henceforth we denote as v[n]−i∗), and denote by vsh the highest among them. We show that,
conditioning on this, the lookahead auction (without duplicates) obtains no more revenue from
bidder i∗ than SPALD does from bidder i∗ and her duplicate, bidder n+ i∗.

We first analyze the posted price faced by i∗ in the lookahead auction. Recall that the lookahead
auction posts the revenue-optimal price for i∗ conditioning on vi∗ ≥ vsh. Conditioning on vi∗ ≥ vsh,
the revenue by posting any price p ≥ vsh to bidder i∗ is p(1−Fi∗(p))/(1−Fi∗ (vsh)), which is simply
the unconditioned revenue at that price p(1−Fi∗(p)) amplified by a constant factor 1/(1−Fi∗(vsh)).
Therefore the shape of the revenue curve conditioned on vi∗ ≥ vsh is simply bidder i∗’s revenue
curve to the left of q(vsh) and amplified by a constant factor. Let r∗i denote the monopoly reserve for
bidder i. Since the original revenue curve is concave, it is nondecreasing to the left of qi∗(r

∗
i∗), the

quantile of the monopoly reserve price, and non-increasing to the right. Therefore, if vsh is higher
than r∗i∗ , the lookahead auction will simply post vsh as the take-it-or-leave-it price for bidder i∗;
otherwise, the lookahead auction uses r∗i∗ as the price.6

If vsh ≥ r∗i∗ , the lookahead auction extracts vsh from bidder i∗ when vi∗ ≥ vsh; but whenever
vi∗ ≥ vsh, SPALD extracts a revenue at least vsh from bidders i∗ and n+ i∗.

The case where vsh < r∗i∗ needs more calculation. Let Ri∗ be the monopoly revenue extractable
from bidder i∗ (i.e., r∗i∗(1−Fi∗(r

∗
i∗)). The lookahead auction, by posting the monopoly reserve price

r∗i∗ , extracts revenue Ri∗ from bidder i∗. We show that SPALD gets at least as much from bidder i∗

and her duplicate.
Recall that the duplicate bidder’s value vn+i∗ is drawn from the same distribution Fi∗ as bid-

der i∗. With probability Fi∗(vsh), vn+i∗ is no more than vsh, and SPALD extracts a revenue of
Revi∗(qi∗(vsh)) from bidder i∗. When vn+i∗ ≥ vsh, bidder i∗ faces in SPALD a take-it-or-leave-
it price of vn+i∗ , and the expected revenue from bidder i∗is precisely the height of Revi∗ at the
quantile of vn+i∗. Since vn+i∗ is drawn from the same distribution, its quantile in Fi∗ , namely,
qi∗(vn+i∗) = 1−Fi∗(vn+i∗), is uniformly distributed on [0, 1]. Therefore the expected revenue when
vn+i∗ ≥ vsh is simply the area under bidder i∗’s revenue curve between 0 and qi∗(vsh). (See Figure 1
for an illustration.7) The expected revenue from the duplicate bidder n+ i∗ is the same area: when
vi∗ is at least vsh, bidder n + i∗ faces a take-it-or-leave-it price of vi∗ , whose quantile in Fn+i∗ is
uniform between 0 and qn+i∗(vsh), and therefore the expected revenue from bidder n+ i∗ is exactly
the area under the revenue curve Revi∗ between quantiles 0 and qi∗(vsh).

Summing up the parts, the revenue of SPALD from bidders i∗ and n+ i∗ when vsh ≤ r∗i∗ is twice
the area under the revenue curve Revi∗ between 0 and qi∗(vsh), plus the area of a rectangle with
height Revi∗(qi∗(vsh)) and width 1 − qi∗(vsh). If one replaces the part of the revenue curve Revi∗

between qi∗(r
∗
i∗) and 1 by a straight line, the resulting curve is still concave, with the highest value

6This analysis essentially shows that the lookahead auction in our setting is the second price auction with monopoly
reserve prices.

7This conversion from the expected revenue to an area under the revenue curve is an elegant technique from
Dhangwatnotai et al. [6].
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1 0q(r∗) q(vsh)

Figure 1: Illustration of a concave revenue curve. In this figure vsh < r∗, and the shaded area is
the expected revenue from this bidder when both she and her duplicate bidder bid above vsh.

at Ri∗ . Twice the area under this new curve is precisely SPALD’s revenue from i∗ and n+ i∗. By
the concavity of the curve, this is still at least Ri∗ . This completes the proof.

5.2 Proof of Theorem 5.1

Proof of Theorem 5.1. Given any two regular distributions with revenue curves Rev1 and Rev2, let
q̃1, q̃2 be the solution to the ex ante revenue maximization problem, and let R1 be Rev1(q̃1) and R2

be Rev2(q̃2). Then the ex ante optimal revenue is R1 +R2.
If we replace the two distributions so that bidder i’s revenue curve is a triangle with the three

vertices at (0, 0), (q̃i, Ri) and (1, 0), then by Lemma C.2, the expected revenue of the second price
auction with two duplicates is smaller whereas, by Lemma C.3, the ex ante optimal revenue remains
the same. We therefore only need to show that the second price auction with duplicates extracts
at least 0.75 fraction of the ex ante optimal revenue in this setting with triangular revenue curves.

By Lemma 5.3, it suffices to analyze the revenue of the lookahead auction (without duplicates)
in this setting. Without loss of generality, suppose R1

q̃1
≥ R2

q̃2
. By the same analysis as in the

proof of Lemma 5.3, bidder 1 always faces a take-it-or-leave-it price of R1/q̃1, by which the auction
extracts a revenue of R1 from her. As for bidder 2, when v1 < R2/q̃2, she is faced with a price at
R2/q̃2; otherwise she faces a price of v1 > q̃2, which she can afford with probability 0. Therefore
the expected revenue extracted from bidder 2 is R2 times Pr[v1 ≤ R2/q̃2]. This probability can be
easily calculated from the geometry of the revenue curves: let this probability be s, then

sR1

1− q̃1
=

(1− s)R2

q̃2
⇒ s =

α(1− q̃1)

q̃2 + (1− q̃1)α
,

where α denotes the ratio R2

R1
. The ratio between the revenue of the lookahead auction and that of

the ex ante optimal revenue is therefore

R1 +R2s

R1 +R2
=

1 + α2(1−q̃1)
q̃2+(1−q̃1)α

1 + α
.

We are interested in the minimum value of this ratio. It is evident that, everything else fixed, the
ratio decreases with q̃2. Therefore, given the constraint q̃1 + q̃2 ≤ 1, we may take q̃2 = 1− q̃1. This
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simplifies the ratio to

1 + α2q̃2
q̃2+αq̃2

1 + α
=

1 + α+ α2

(1 + α)2
.

This ratio is minimized at α = 1, and evaluates to 3
4 .

6 Conclusion and Open Questions

In this work we closed the gap in the number of duplicates needed for the VCG auction to yield a
constant fraction of the optimal revenue. For both the single-item and k-item auctions, we showed
tight bounds: instead of duplicating all bidders as required by Hartline and Roughgarden [11], only
one (or k, respectively) duplicate is needed. These match the numbers in the i.i.d. settings in Bulow
and Klemperer’s original result, and show that the only loss, when one removes symmetry from
the i.i.d. setting, is a constant fraction of revenue, without need to grow the number of duplicates
(although one needs to be more careful in choosing a duplicate).

We leave several interesting questions for future study. We have focused on obtaining a constant
approximation, and our technique is unlikely to yield the tightest approximation achieveable by a
single duplicate. In fact, in the single-item auction, the worst revenue loss with a single duplicate
we know of is only 0.31 fraction of the optimal revenue (see Remark 5.7 in Section 5). We believe
the approximation ratio is closer to 2 than to 10.

We extended our results to k-items auctions in two settings. In the “free” setting, a bidder can
be duplicated multiple times and all duplicates participate as all other bidders. This setting is most
natural for a k-items auction, but cannot be extended to settings with more complex feasibility
constraints. The “constrained” setting allows each bidder to be duplicated at most once, but
allows at most one of a bidder and her duplicate to win. This can be generalized to domains such
as matroid settings. Hartline and Roughgarden [11] showed their 2-approximation for n-duplicates
in any matroid setting. It would be interesting to know whether k duplicates always suffice for an
auction with a rank k matroid feasibility costraint.

We made progress on the ten-year-old open problem of the approximation ratio of the Vickrey
auction with n duplicates. We showed that 4

3 is the correct bound for n = 2 but as we remarked in
Section 5, new techniques would be needed to tighten the analysis for n > 2.
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A Technical results

Claim A.1. Suppose that 0 ≤ q ≤ q′ ≤ β ≤ 1. Then for any regular distribution, we have
Rev(q′) ≥ (1− β)Rev(q).

Proof. By the concavity of the revenue curves, we have

Rev(q′) ≥
1− q′

1− q
Rev(q) +

q′ − q

1− q
Rev(1) ≥ (1− β)Rev(q),

since Rev(1) ≥ 0.

Claim A.2. Let q ∈ [0, 1/2] and q′ ∈ [0, 1] be such that |q − q′| ≤ ǫq for some ǫ ∈ [0, 1]. Then
(1− ǫ)Rev(q) ≤ Rev(q′) ≤ 1

1−ǫ Rev(q).

Proof. First suppose that q′ > q. By concavity of the revenue curve, we have

Rev(q′) ≥
1− q′

1− q
Rev(q) +

q − q′

1− q
Rev(1)

≥
1− q′

1− q
Rev(q)

≥
1− q + q − q′

1− q
Rev(q)

=

(

1−
q′ − q

1− q

)

Rev(q).

Since q ≤ 1/2, we have q ≤ 1− q. So

Rev(q′) ≥

(

1−
q′ − q

1− q

)

Rev(q)

≥

(

1−
ǫq

1− q

)

Rev(q)

≥

(

1−
ǫ(1− q)

1− q

)

Rev(q)

= (1− ǫ)Rev(q).

This proves the lower bound on Rev(q′). To get the upper bound, we use concavity again and note
that

Rev(q) ≥
q

q′
Rev(q′) +

q′ − q

q′
Rev(0)

≥
q

q′
Rev(q′)

≥
q′ − ǫq

q′
Rev(q′)

= (1− ǫq/q′)Rev(q′)

≥ (1− ǫ)Rev(q′),

where the last inequality is because q < q′. So Rev(q′) ≤ 1
1−ǫ Rev(q

′).
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The case of q′ < q follows from calculations which are similar to those above. Indeed

Rev(q′) ≥
q′

q
Rev(q) +

q − q′

q
Rev(0)

≥
q′

q
Rev(q)

≥
(1− ǫ)q

q
Rev(q)

= (1− ǫ)Rev(q)

and

Rev(q) ≥

(

1−
q − q′

1− q′
Rev(q′)

)

.

Since q′ < q ≤ 1/2, we have q ≤ 1 − q ≤ 1 − q′. So q − q′ ≤ ǫq ≤ ǫ(1 − q′) and this shows that
Rev(q) ≥ (1− ǫ)Rev(q′) as desired.

Let Ber(p) denote the Bernoulli distribution with mean p and Binom(n, p) be the binomial
distribution.

Theorem A.3 (Theorem 4 in [12]). Let X1, . . . ,Xn be random variables where Xi ∼ Ber(pi). Let
S =

∑n
i=1 Xi and set p = n−1E[S]. Then for all c ≤ np− 1, Pr[S ≤ c] ≤ Pr[Binom(n, p) ≤ c].

Fact A.4 (Corollary 1 in [13]). The median of Binom(n, p) is at least ⌊np⌋.

Let X1, . . . ,Xn be random variables where Xi ∼ Ber(pi), S =
∑n

i=1 Xi,a nd p = n−1E[S].
Since np− 1 ≤ ⌊np⌋, Theorem A.3 and Fact A.4 imply that

Pr [S ≤ np− 1] ≤ Pr [S < ⌊np⌋] ≤ 1/2.

Hence, Pr[S ≥ np] ≥ 1/2.

B Additional Results for k-item Auctions

Theorem 4.2 only guarantees the existence of at most k bidders which can be duplicated so that
VCG in the duplication environment approximates the ex-ante optimal revenue. The next result
shows that under mild assumptions and (noisy) knowledge about the revenue curve, the auctioneer
can determine which bidders ought to be duplicated.

Theorem B.1. Consider a k-item auction with n bidders whose values are drawn independently
from (non-identical) regular distributions F1, . . . , Fn. Suppose that the auctioneer has access to the
following oracle for each bidder i for some β ∈ (0, 1/2] and ǫ ∈ (0, 1): the oracle returns Revi(β

′
i)

with the promise that |β − βi| ≤ ǫβ. Let S be the k highest bidders in terms of Revi(β
′
i). Then

duplicating every bidder in S and running the VCG mechanism (restricting that a bidder and her
duplicate cannot both win) on the n + k bidders, the auctioneer can extract a revenue of at least
c(β, ǫ)·OPT where c(β, ǫ) is a constant depending only on β and ǫ. Moreover, c(0.5, ǫ) ≥ (1−ǫ)3 ·0.1.

Proof. Let γ, δ satisfy 1
γ ((1 − β)(1 − γ) − δ) ≥ 3

2 . By shuffling the indices, let us assume that
Rev1(β) ≥ . . . ≥ Revn(β).

Again, we consider the following three cases given by Lemma 4.3. However, we will have to be
a little careful with how we set up the cases (note that the cases are not necessarily a partition).
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Case 1: vk(β) < (1− ǫ)2 γ
k but there exists q1, . . . , qn ∈ [β, 1) and a set H ⊆ [n] with |H| < k

such that vi(β) ≥
γ
k for all i ∈ H and

∑

i∈H Revi(qi) ≥ δ ·OPT. The assumptions in the case

imply that we can assume H = {i ∈ S : vi(β) ≥
γOPT

k }. Let S be the top k highest bidders in
terms of Revi(β

′
i). We claim that H is a subset of S.

Claim B.2. It holds that H ⊆ S.

Proof. Suppose i ∈ H. Then vi(β) ≥ γ
k OPT so Revi(β) ≥ γβ

k OPT. By Claim A.2, this implies

that Revi(β
′
i) ≥ (1− ǫ)γβk OPT.

On the other hand, suppose that i ≥ k. Then vi(β) < (1 − ǫ)2 γ
k OPT so Revi(β) < (1 −

ǫ)2 γβ
k OPT. Hence, applying Claim A.2 again, we have that Revi(β

′
i) < (1− ǫ)γβk OPT.

The two previous paragraphs imply that if i ∈ H then Revi(β
′
i) ≥ Revj(β

′
j) for all j ≥ k. Since

S contains the top k bidders in terms of Revi(β
′
i) this implies that S contains H completing the

proof.

Since we duplicate every bidder in H, Theorem 2.2 implies that a lower bound on the revenue
of VCG on the resulting environment is

∑

i∈H Revi(β) ≥ δ ·OPT.

Case 2: There exists a set H ⊆ [n] with |H| ≥ k such that vi(β) ≥ (1− ǫ)2 γk OPT. In this

case, we have Revi(β) ≥ (1− ǫ)2 βγ
k OPT for 1 ≤ i ≤ k. Let H be the k highest bidders in terms of

Revi(β
′
i). Then

∑

i∈H

Revi(β
′
i) ≥

k
∑

i=1

Revi(β
′
i)

≥
k
∑

i=1

(1− ǫ)Revi(β) (by Claim A.2)

≥
k
∑

i=1

(1− ǫ)3
βγ

k
OPT

≥ (1− ǫ)3βγOPT .

Hence, duplicating the bidders in H obtains and running VCG extracts a revenue of at least
(1− ǫ)3βγOPT.

Case 3: With probability at least 1/2 there exists at least k+1 bidders who bid at least
γ
k OPT. This case is straightforward since without duplicating, VCG already extracts a revenue
of γ

2 OPT.
Combining the three cases we see that we can obtain a revenue of at least min{(1 − ǫ)βδ, (1 −

ǫ)βγ, γ(1/2)}OPT. In particular, one can take

c(β, ǫ) = max
γ,δ∈[0,1]:

1

γ
((1−β)(1−γ)−δ)≥3/2

min
{

δ, (1 − ǫ)3γβ, γ/2
}

.

Finally, observe that if one chooses β = 0.5, δ = 0.1, γ = 0.2 then one obtains that c(0.5, ǫ) ≥
(1− ǫ)3 · 0.1.
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C Missing proofs from Section 5

Lemma C.1. Let R and R̃ be the revenue curves of two value distributions F and F̃ . F stochas-
tically dominates F̃ if and only if R pointwise dominates R̃ in the sense that for any q ∈ [0, 1],
R(q) ≥ R̃(q).

Proof. Suppose F stochastically dominates F̃ , for any quantile q, F−1(1 − q) ≥ F̃−1(1 − q), and
so R(q) = qF−1(1 − q) ≥ qF̃−1(1 − q) = R̃(q). Conversely, if R pointwise dominates R̃, for any

value v, let the quantile of v in F be q, and that in F̃ be q̃. Then Prw∼F [w ≥ v] = R(q)
v ≥ R̃(q)

v =

Prw∼F̃ [w ≥ v], which shows that F stochastically dominates F̃ .

Lemma C.2. In a second price auction where all bidders’ values are drawn independently, if we
replace bidder i by another bidder i′ whose revenue curve is dominated by that of bidder i’s, the
new auction extracts no more expected revenue than the original.

Proof. The revenue of the second price auction is the expected value of the second highest bid.
By Lemma C.1, the operation in the lemma statement replaces one value distribution by another
stochastically dominated by the former. It is immediate that this decreases the expected value of
any order statistics, including the revenue of the second price auction.

Lemma C.3. In a single item auction setting with values independently drawn from regular dis-
tributions whose revenue curves are Rev1, · · · ,Revn, suppose the optimal solution to the ex ante
revenue maximization problem are the quantiles q̃1, q̃2, . . . , q̃n, these remain an optimal solution (to
the problem of ex ante revenue maximization) when each bidder i’s value distribution is replaced by
one whose revenue curve is a triangle whose three vertices are (0, 0), (1, 0) and (q̃i,Revi(q̃i)).

This lemma was proved and used in Alaei et al. [1]. For completeness we give a proof.

Proof. Note that q̃1, . . . , q̃n constitute a feasible solution to the ex ante revenue in the setting with
triangle revenue curves. Therefore the ex ante optimal revenue in the new setting is no less than
before. However, it cannot be more either. This is because each revenue curve in the new setting
is pointwise dominated by the original one, by the concavity of the latter, so any feasible solution
gives weakly less revenue in the new setting. This shows the optimality of q̃1, . . . , q̃n.

Calculation of Remark 5.7. If we duplicate the deterministic bidder then the revenue is 1.
On the other, suppose that we duplicate the bidder whose cdf is F2(v) = 1− 1

v+1 . Let us analyze
the revenue of the Vickrey auction in this case. Let v1 be the value of the deterministic bidder (so
v1 = 1 with probability 1) and v2, v3 ∼ F2.

If v2, v3 ≤ 1 (which occurs with probability 1/4) then the Vickrey auction extracts max{v2, v3}.

So the average revenue, conditioned on v2, v3 ≤ 1 is
∫ 1
0 1−

(

2− 2
t+1

)2
dt = 4 ln(4)− 5. Hence, this

case contributes ln(4) − 5/4 to the revenue.
If v2 ≤ 1 ≤ v3 or v3 ≤ 1 ≤ v2 (each occurring with probability 1/4) then the revenue is 1. These

two cases contribute 1/2 to the revenue.
Finally, if v2, v3 ≥ 1 (which occurs with probability 1/4) then the revenue is 1+

∫∞
1

4
(t+1)2 dt =

1 + 2. So this case contributes 3/4 to the revenue.
Hence, the average revenue is ln(4).
The revenue of the optimal auction with the original bidders is ≈ 2 so the approximation ratio

is 2
ln 4 ≈ 1.44.
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Calculation of Example 5.8. Note that the highest value in the supports of the latter two distri-
butions is 1. Let u be the highest value among the bidders with values drawn from the latter two
distributions. Conditioning on any u, the revenue of the Vickrey auction with duplicates is at most
u+

∫∞
u

1
(v+1)2

dv = u+ 1
u+1 . For u ≥ 0 this is increasing in u, and is 1.5 when u is 1. However, with

constant probability u is strictly smaller than, say, 0.9, and therefore in expectation the Vickrey
auction with duplicates extracts a revenue strictly smaller than 1.5.
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