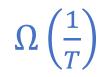
Simple and optimal high probability bounds for stronglyconvex stochastic gradient descent

Nicholas J. A. Harvey

Christopher Liaw University of British Columbia **Sikander Randhawa**

Motivation:


Standard SGD Results: non-smooth and strongly convex functions

SGD, in a nutshell: $x_{t+1} \leftarrow x_t - \eta_t \widehat{g_t}$. [$\mathbb{E}\widehat{g_t} = \nabla f(x_t)$]

Final iterate expected error: $\mathbb{E}[f(x_T) - f(x^*)] = \Theta\left(\frac{\log T}{T}\right)$ [Step size $\eta_t = 1/t$.]

Uniform average expected error: [Step size $\eta_t = 1/t$.] $\mathbb{E}\left[f\left(\frac{1}{T}\sum_{1}^{T}x_{t}\right) - f(x^{*})\right] = \Theta\left(\frac{\log T}{T}\right)$

Lower bound on expected error for any first order, stochastic alg:

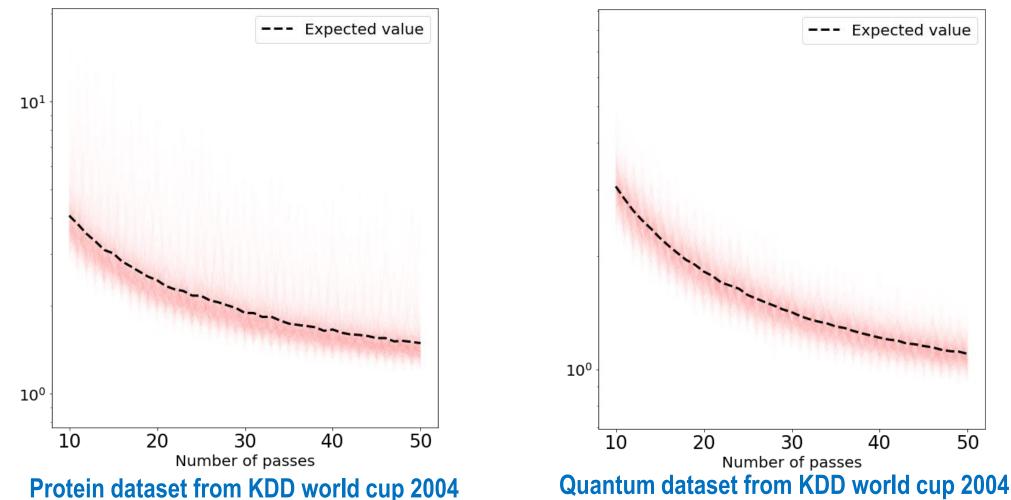
Closing the gap: Getting the optimal expected $O\left(\frac{1}{\tau}\right)$ rate.

Researchers have designed algorithms to get the optimal rate.

Some algorithms are simpler than others.

Arguably, the *simplest and easiest to implement* is the following:

- Run SGD (step size $\eta_t = 2/t+1$) until output time.
- Return a non-uniform average:


$$\frac{1}{\binom{T}{2}}\sum_{t=1}^{T}t x_t.$$

[Lacoste-Julien, Schmidt, Bach (2012)]

Another Issue: High variance

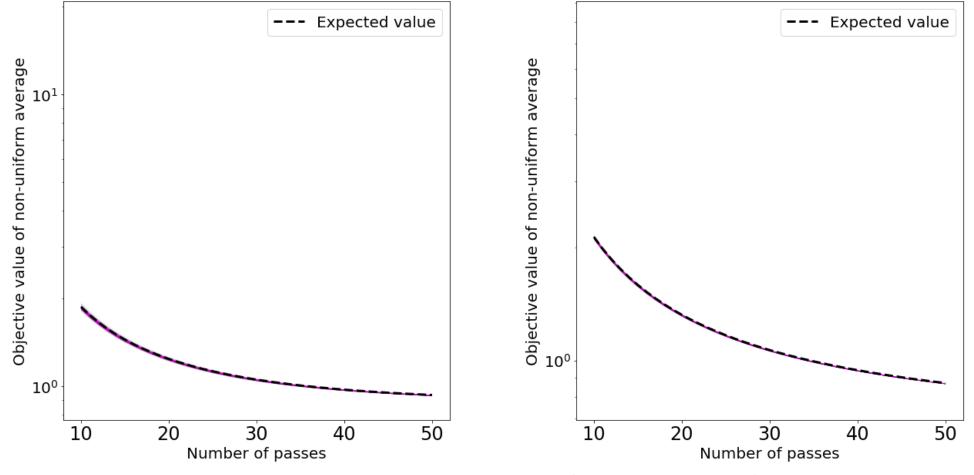
Minimize $f(w) = \frac{\lambda}{2} ||w||_2^2 + \sum_{i=1}^m \max\{0, 1 - y_i w^T x_i\}$

Objective value of each iterate of SGD over time (1000 trials)

Another Issue: High variance

Maybe the non-uniform averaging strategy also suffers from high variance?

Main Result: High probability bound on error of non uniform average

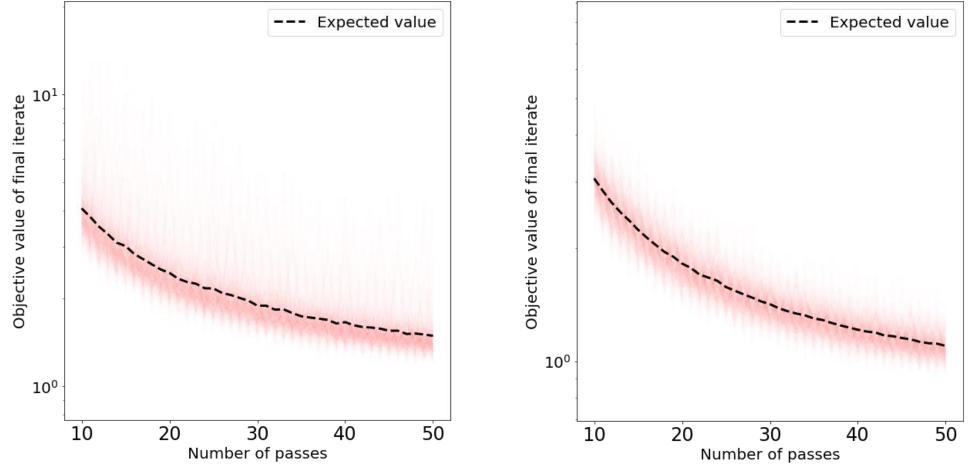

<u>**Theorem</u></u>: Suppose f is strongly-convex and \|\widehat{g_t}\| is bounded for all t. Run SGD (with step size \eta_t = \frac{2}{t+1}). Then, for every \delta \in (0,1),</u>**

$$f\left(\frac{1}{\binom{T}{2}}\sum_{t=1}^{T}tx_{t}\right) - f(x^{*}) \leq \mathcal{O}\left(\frac{\log\left(\frac{1}{\delta}\right)}{T}\right),$$

with probability at least $1 - \delta$.

Empirical Performance: non-uniform average

Objective value of non-uniform average over time (1000 trials)



Protein dataset from KDD world cup 2004

Quantum dataset from KDD world cup 2004

Empirical Performance: *individual iterates*

Objective value of each iterate of SGD over time (1000 trials)

Protein dataset from KDD world cup 2004

Quantum dataset from KDD world cup 2004

Thank you!