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Motivation:



Standard SGD Results: non-smooth and strongly 
convex functions

Final iterate expected error: 𝔼 𝑓 𝑥𝑇 − 𝑓(𝑥∗) = Θ
log 𝑇
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Uniform average expected error: 𝔼 𝑓
1

𝑇
σ1
𝑇 𝑥𝑡 − 𝑓(𝑥∗) = Θ

log 𝑇

𝑇

Lower bound on expected error for any first order, stochastic alg: Ω
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[ Step size 𝜂𝑡 = Τ1 𝑡. ]

[ Step size 𝜂𝑡 = Τ1 𝑡. ]

SGD, in a nutshell:  𝑥𝑡+1 ← 𝑥𝑡 − 𝜂𝑡ෞ𝑔𝑡.            [ 𝔼ෞ𝑔𝑡 = ∇𝑓 𝑥𝑡 ]



Closing the gap: Getting the optimal expected 𝒪
1

𝑇
rate.

Researchers have designed algorithms to get the optimal rate. 

Some algorithms are simpler than others.

Arguably, the simplest and easiest to implement is the following:

• Run SGD (step size 𝜂𝑡 = Τ2 𝑡+1) until output time.
• Return a non-uniform average:
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[Lacoste-Julien, Schmidt, Bach (2012)]



Another Issue: High variance

Protein dataset from KDD world cup 2004 Quantum dataset from KDD world cup 2004

Minimize 𝑓 𝑤 =
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Objective value of each iterate of SGD over  time (1000 trials)



Another Issue: High variance

Maybe the non-uniform 

averaging strategy also 

suffers from high variance?



Main Result: High probability bound on error of non 
uniform average

Theorem: Suppose 𝑓 is strongly-convex and ෞ𝑔𝑡 is bounded for all 𝑡. Run SGD 
(with step size 𝜂𝑡 = Τ2 𝑡+1). Then, for every 𝛿 ∈ (0,1),
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with probability at least 1 − 𝛿.



Empirical Performance: non-uniform average
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Objective value of non-uniform average over time (1000 trials)



Empirical Performance: individual iterates
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Objective value of each iterate of SGD over time (1000 trials)



Thank you!


