
Understanding the role of averaging in non-smooth stochastic gradient descent

by

Sikander Randhawa

B. Sc, University of British Columbia, 2018

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

August 2020

c© Sikander Randhawa, 2020

The following individuals certify that they have read, and recommend to the Faculty of Graduate and Postdoc-
toral Studies for acceptance, the thesis entitled:

Understanding the role of averaging in non-smooth stochastic gradient descent

submitted by Sikander Randhawa in partial fulfillment of the requirements for the degree of Master of Science
in Computer Science.

Examining Committee:

Nicholas J. A. Harvey, Computer Science
Supervisor

Bruce Shepherd, Computer Science
Supervisory Committee Member

ii

Abstract

Consider the problem of minimizing functions that are Lipschitz and strongly convex, but not necessarily dif-

ferentiable. We prove that after T steps of stochastic gradient descent (SGD), the error of the final iterate is

O(log(T)/T) with high probability. We also construct a function from this class for which the error of the final

iterate of deterministic gradient descent is Ω(log(T)/T). This shows that the upper bound is tight and that, in

this setting, the last iterate of stochastic gradient descent has the same general error rate (with high probability)

as deterministic gradient descent. This resolves both open questions posed by Shamir [42].

We prove analogous results for functions which are Lipschitz and convex, but not necessarily strongly con-

vex or differentiable. After T steps of stochastic gradient descent, the error of the final iterate is O(log(T)/
√

T)

with high probability, and there exists a function for which the error of the final iterate of deterministic gradient

descent is Ω(log(T)/
√

T).

In the strongly-convex setting, several forms of SGD, including suffix averaging, are known to achieve the

optimal O(1/T) convergence rate in expectation. An intermediate step of our high probability analysis for the

error of the final iterate proves that the suffix averaging method achieves error O(1/T) with high probability,

which is optimal (for any first-order optimization method). This improves results of Rakhlin et al. [36] and

Hazan and Kale [17], both of which achieved error O(1/T), but only in expectation, and achieved a high

probability error bound of O(log log(T)/T), which is suboptimal. This is the first known high-probability result

which attains the optimal O(1/T) rate.

We also consider a simple, non-uniform averaging strategy of Lacoste-Julien et al. [26] and prove that it too

achieves the optimal O(1/T) convergence rate with high probability. This provides a second algorithm which

achieves the optimal O(1/T) convergence rate with high-probability. Our high-probability results are proven

using a generalization of Freedman’s Inequality which we develop.

iii

Lay Summary

Many machine learning tasks are represented as optimization problems where the objective is to produce a

minimizer of some function. Often, what makes this task difficult is that it is very slow to compute the function

value at any point. Nonetheless, there are simple procedures which provide non-trivial theoretical guarantees on

finding an approximate minimizer. One such algorithm is gradient descent, which makes incremental progress

towards a minimizer by taking small steps in the “steepest downhill direction.” If the shape of the function does

not change rapidly, gradient descent guarantees progress at every step. Otherwise, some steps can increase the

function value; this is the setting we consider. We study the function value of different combinations of the

points visited by gradient descent and compare them to the value of the minimizer. Understanding this is of

practical significance because gradient descent is a fundamental algorithm for many machine learning tasks.

iv

Preface

The main body of work presented in this thesis was largely conducted in collaboration with Nicholas Harvey,

Christopher Liaw, and Yaniv Plan and was accepted for publication [15] at the Conference of Learning Theory

2019 [Nicholas J. A. Harvey, Christopher Liaw, Yaniv Plan, Sikander Randhawa. Tight analyses of non-smooth

stochastic gradient descent. In Conference on Learning Theory, 2019.]. The majority of the results and proofs

found in Chapter 2, Chapter 3, Chapter 4, Section 5.2 can be found in [15]. The proofs of these results were

developed as a result of collaborative effort and the writing was shared equally amongst authors. Some excep-

tions include the proofs in Section 3.4 and Section 3.5 which are currently unpublished and were developed and

written by me. The statements of results from Chapter 5 and Chapter 6 can be found in [15] without proof. We

provide full proofs in this thesis. I wrote Section 5.1 in Chapter 5, derived and wrote the results in Section 6.3,

and wrote Section 6.2. The writing responsibilities in other sections of these chapters were shared amongst

collaborators.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

Acknowledgments . ix

Dedication . x

1 Introduction . 1
1.1 Introduction . 1

1.2 Preliminaries . 3

1.2.1 Preliminaries on martingales . 4

1.3 Our contributions . 6

1.3.1 High probability upper bounds . 6

1.3.2 Lower bounds . 7

1.3.3 High probability upper bound for suffix averaging . 8

1.4 Techniques . 8

2 Finite Dimensional Lower Bounds . 11
2.1 Lower bound on error of final iterate, strongly convex case . 11

2.2 Lower bound on error of final iterate, Lipschitz case . 13

2.3 Omitted proofs for the lower bounds . 16

2.3.1 Strongly convex case . 16

2.3.2 Lipschitz case . 17

2.3.3 Monotonicity . 18

3 High Probability Bounds . 20
3.1 Upper bound on error of final iterate, strongly convex case . 20

3.1.1 Bounding the noise . 21

3.1.2 High probability bounds on squared distances to x∗ . 23

vi

3.1.3 Upper bound on error of suffix averaging . 24

3.2 Upper bound on error of final iterate, Lipschitz case: proof sketch 24

3.2.1 Bounding the noise . 25

3.3 Omitted proofs from Section 3.1 . 27

3.3.1 Standard analysis of SGD . 27

3.3.2 Proof of Lemma 3.1 . 28

3.3.3 Proof of Lemma 3.3 . 29

3.3.4 Proof of Lemma 3.4 . 30

3.3.5 Proof of Claim 3.18 . 31

3.3.6 Proof of Claim 3.7 . 33

3.4 Alternative proof of Theorem 1.17 . 34

3.4.1 Proof of Lemma 3.22 . 36

3.4.2 Proof of Lemma 3.23 . 36

3.5 High probability bound on a non-uniform averaging scheme 37

3.5.1 Main idea of proof of Theorem 3.25 . 38

3.5.2 High probability upper bound analysis . 39

3.5.3 Proof of Claim 3.26 . 39

3.5.4 Bounding ZT . 40

3.5.5 Missing proofs from Subsection 3.5.4 . 42

4 Probabilistic Tools . 44
4.1 Proof of Theorem 1.11 and corollaries . 44

4.1.1 Corollaries of Theorem 1.11 . 47

4.2 Proof of Theorem 1.19 . 49

5 Infinite Dimensional and Probabilistic Lower Bounds . 51
5.1 Functions attaining large error infinitely often . 51

5.1.1 Proof of Theorem 5.1 . 53

5.1.2 Proof of Lemma 5.5 . 55

5.1.3 Proof of Claim 5.8 . 61

5.2 Necessity of log(1/δ) . 62

6 Extensions and Generalizations . 64
6.1 Generalizations . 64

6.1.1 Scaling assumptions . 64

6.1.2 Subgaussian noise . 67

6.2 Subgaussian and subexponential random variables . 67

6.2.1 Subgaussian random variables . 67

6.2.2 Subexponential random variables . 69

6.2.3 Relationship between subgaussian and subexponential random variables 70

6.3 Upper bound on error of final iterate: subgaussian noise . 71

vii

6.3.1 Upper bound on error of final iterate, strongly convex case with subgaussian noise . . . 71

6.3.2 High probability bounds on squared distances to x∗ . 75

6.3.3 Suffix averaging . 76

6.3.4 Proof of Theorem 6.35 . 77

6.3.5 Using Theorem 1.11 with conditionally subgaussian increments 79

7 Conclusions and Future Work . 81
7.1 Open questions . 81

Bibliography . 82

A Standard Results . 85
A.1 Useful scalar inequalities . 86

viii

Acknowledgments

First and foremost I would like to express a deep sense of gratitude to my supervisor, Nick Harvey. I am

extremely grateful and consider myself lucky to have been able to learn from him. I would not be in the position

I am in now without the patience, guidance, and optimism of Nick. I would also like to thank Hu Fu and Bruce

Shepherd for being wonderful mentors to me.

To my Mom, Dad, Brother, Grandmother and my Uncle Sam: without your consistent love, support, sacrifice

and encouragement there is not much that I would be able to accomplish. Thank you for raising me and giving

me everything when you had nothing. To my closest friends, Angad Kalra and Harish Anand, thank you for

always inspiring me to grow as a human and for the countless laughs and good times which we have shared.

ix

Dedication

This thesis is dedicated to my Mom, Dad, and Brother.

x

Chapter 1

Introduction

1.1 Introduction
Stochastic gradient descent (SGD) is one of the oldest randomized algorithms, dating back to 1951 [37]. It is

a very simple and widely used iterative method for minimizing a function. In a nutshell, the method works by

querying an oracle for a noisy estimate of a subgradient, then taking a small step in the opposite direction. The

simplicity and effectiveness of this algorithm has established it both as an essential tool for applied machine

learning [21, 40], and as a versatile framework for theoretical algorithm design.

In theoretical algorithms, SGD often appears in the guise of coordinate descent, an important special case

in which each gradient estimate has a single non-zero coordinate. Some of the fast algorithms for Laplacian

linear systems [23, 28] are based on coordinate descent (and the related Kaczmarz method [44]). Multi-armed

Bandits were discovered years ago to be a perfect setting for coordinate descent [2]: the famous Exp3 algorithm

combines coordinate descent and the multiplicative weight method. Recent work on the geometric median

problem [9] gave a sublinear time algorithm based on SGD, and very recently a new privacy amplification

technique [12] has been developed that injects noise to the subgradients while executing SGD. Surveys and

monographs discussing gradient descent and aimed at a theoretical CS audience include Bansal and Gupta [4],

Bubeck [7], Hazan [16], and Vishnoi [46].

The efficiency of SGD is usually measured by the rate of decrease of the error — the difference in value be-

tween the algorithm’s output and the true minimum. The optimal error rate is known under various assumptions

on f , the function to be minimized. In addition to convexity, common assumptions are that f is smooth (gradient

is Lipschitz) or strongly convex (locally lower-bounded by a quadratic). Strongly convex functions often arise

due to regularization, whereas smooth functions can sometimes be obtained by smoothening approximations

(e.g., convolution). Existing analyses [32] show that, after T steps of SGD, the expected error of the final it-

erate is O(1/
√

T) for smooth functions, and O(1/T) for functions that are both smooth and strongly convex;

furthermore, both of these error rates are optimal without further assumptions.

The non-smooth setting is the focus of this thesis. In theoretical algorithms and discrete optimization, the

convex functions that arise are often non-smooth. For example, the objective for the geometric median problem

is a (sum of) 2-norms [9], so Lipschitz but not smooth. Similarly, formulating the minimum s-t cut problem

as convex minimization [29], the objective is a 1-norm, so Lipschitz but not smooth. In machine learning, the

1

objective for regularized support vector machines [41] is strongly convex but not smooth.

A trouble with the non-smooth setting is that the error of (even deterministic) gradient descent need not

decrease monotonically with T , so it is not obvious how to analyze the error of the final iterate. A workaround,

known as early as [33], is to output the average of the iterates. Existing analyses of SGD show that the expected

error of the average is Θ(1/
√

T) for Lipschitz functions [33], which is optimal, whereas for functions that are

also strongly convex [18, 36] the average has error Θ(log(T)/T) with high probability, which is not the optimal

rate. An alternative algorithm, more complicated than SGD, was discovered by Hazan and Kale [17]; it achieves

the optimal expected error rate of O(1/T). Suffix averaging, a simpler approach in which the last half of the

SGD iterates are averaged, was also shown to achieve expected error O(1/T) [36], although implementations

can be tricky or memory intensive if the number of iterations T is unknown a priori. Non-uniform averaging

schemes with optimal expected error rate and simple implementations are also known [27, 43], although the

solutions may be less interpretable.

Shamir [42] asked the very natural question of whether the final iterate of SGD achieves the optimal rate in

the non-smooth scenario, as it does in the smooth scenario. If true, this would yield a very simple, implementable

and interpretable form of SGD. Substantial progress on this question was made by Shamir and Zhang [43], who

showed that the final iterate has expected error O(log(T)/
√

T) for Lipschitz f , and O(log(T)/T) for strongly

convex f . Both of these bounds are a log(T) factor worse than the optimal rate, so Shamir and Zhang [43] write

An important open question is whether the O(log(T)/T) [expected] rate we obtained on [the last

iterate], for strongly-convex problems, is tight. This question is important, because running SGD

for T iterations, and returning the last iterate, is a very common heuristic. In fact, even for the

simpler case of (non-stochastic) gradient descent, we do not know whether the behavior of the last

iterate... is tight.

Our work shows that the log(T) factor is necessary, both for Lipschitz functions and for strongly convex func-

tions, even for non-stochastic gradient descent. So both of the expected upper bounds due to Shamir and Zhang

are actually tight. This resolves the first question of Shamir [42]. In fact, we show a much stronger statement:

any convex combination of the last k iterates must incur a log(T/k) factor. Thus, suffix averaging must average

a constant fraction of the iterates to achieve the optimal rate.

Recently, Jain et al. [20] consider the setting where the time horizon, T , is fixed ahead of time. They show

that in both the strongly-convex case and the Lipschitz case, a suitable choice of step size gives the final iterate

the optimal convergence rates of O(1/T) and O(1/
√

T), respectively in expectation and with high probability.

On the other hand, for the strongly-convex and stochastic case, when T is unknown, they show that no choice

of step size gives the individual iterates of SGD the O(1/T) rate for every T .

High probability bounds on SGD are somewhat scarce; most of the literature proves bounds in expectation,

which is of course easier. A common misconception is that picking the best of several independent trials of

SGD would yield high-probability bounds, but this approach is not as efficient as it might seem1. So it is both

interesting and useful that high-probability bounds hold for a single execution of SGD. Some known high-

probability bounds for the strongly convex setting include [22], for uniform averaging, and [17, 36], which give

1 It is usually the case that selecting the best of many independent trials is very inefficient. Such a scenario, which is very common in
uses of SGD, arises if f is defined as ∑

m
i=1 fi or Eω [fω]. In such scenarios, evaluating f exactly could be inefficient, and even estimating

it to within error 1/T requires Θ(T 2) samples via a Hoeffding bound, whereas SGD uses only O(T) samples.

2

a suboptimal bound of O(log log(T)/T) for suffix averaging (and a variant thereof). In this work, we give two

high probability bounds on the error of SGD for strongly convex functions: O(1/T) for suffix averaging and

O(log(T)/T) for the final iterate. Both of these are tight. (Interestingly, the former is used as an ingredient for

the latter.) The former answers a question of Rakhlin et al. [36, §6], and the latter resolves the second question

of Shamir [42]. For Lipschitz functions, we prove a high probability bound of O(log(T)/
√

T) for the final

iterate, which is also tight.

Our work can also be seen as extending a line of work on understanding the difference between an average

of the iterates or the last iterate of an iterative process. For instance, an important result in game theory is that the

multiplicative weights update algorithm converges to an equilibrium [14], i.e. the set of players are required to

play some sort of “coordinated average” of their past strategies. Recently, [3] studied the convergence behaviour

of players’ individual strategies and found that the strategies diverge and hence, coordination (i.e. averaging) is

needed to obtain an equilibrium. In a similar spirit, our work shows that the iterates of gradient descent have

a sub-optimal convergence rate, at least for non-smooth convex functions, and thus, some form of averaging

is needed to achieve the optimal rate. It is an interesting direction to see whether or not this is necessary in

other iterative methods as well. For instance, the multiplicative weights update algorithm can be used to give an

iterative algorithm for maximum flow [8], or linear programming in general [1, 34], but also requires some form

of averaging. We hope that this thesis contributes to a better understanding on when averaging is necessary in

iterative processes.

1.2 Preliminaries
Let X be a closed, convex subset of Rn, f : X →R be a convex function, and ∂ f (x) the subdifferential of f at

x. Our goal is to solve the convex program minx∈X f (x). (Our later assumptions will imply that minx∈X f (x) is

realized by some point x∗). We assume that f is not explicitly represented. Instead, the algorithm is allowed to

query f via a stochastic gradient oracle, i.e., if the oracle is queried at x then it returns ĝ = g− ẑ where g∈ ∂ f (x)

and E [ẑ] = 0 conditioned on all past calls to the oracle. The set X is represented by a projection oracle, which

returns the point in X closest in Euclidean norm to a given point x. We say that f is α-strongly convex if

f (y) ≥ f (x)+ 〈g, y− x 〉+ α

2
‖y− x‖2 ∀y,x ∈X ,g ∈ ∂ f (x). (1.1)

Throughout this thesis, ‖·‖ denotes the Euclidean norm in Rn and [T] denotes the set {1, . . . ,T}.
We say that f is L-Lipschitz if ‖g‖ ≤ L for all x ∈X and g ∈ ∂ f (x). For the remainder of this thesis, unless

otherwise stated, we make the assumption that α = 1 and L = 1; this is only a normalization assumption and is

without loss of generality (see Section 6.1). For the sake of simplicity, we also assume that ‖ẑ‖ ≤ 1 a.s. although

our arguments generalize to the setting when ẑ are subgaussian (see Section 6.1).

Let ΠX denote the projection operator on X , which is defined by ΠX (y) = argminx∈X ‖x− y‖. The

(projected) stochastic gradient algorithm is given in Algorithm 1. Notice that the algorithm maintains a sequence

of points and there are several strategies to output a single point. The simplest strategy is to simply output xT+1.

However, one can also consider averaging all the iterates [35, 39] or averaging only a fraction of the final iterates

[36]. Notice that the algorithm also requires the user to specify a sequence of step sizes. The optimal choice of

step size is known to be ηt = Θ(1/t) for strongly convex functions [32, 36], and ηt = Θ(1/
√

t) for Lipschitz

3

functions. For our analyses, we will use a step size of ηt = 1/t for strongly convex functions and ηt = 1/
√

t for

Lipschitz functions.

Algorithm 1 Projected stochastic gradient descent for minimizing a non-smooth, convex function.

1: procedure STOCHASTICGRADIENTDESCENT(X ⊆ Rn, x1 ∈X , step sizes η1,η2, . . .)
2: for t← 1, . . . ,T do
3: Query stochastic gradient oracle at xt for ĝt such that E [ĝt | ĝ1, . . . , ĝt−1] ∈ ∂ f (xt)
4: yt+1← xt −ηt ĝt (take a step in the opposite direction of the subgradient)
5: xt+1←ΠX (yt+1) (project yt+1 onto the set X)

6: return either

xT+1 (final iterate)

1
T+1 ∑

T+1
t=1 xt (uniform averaging)

1
T/2+1 ∑

T+1
t=T/2+1 xt (suffix averaging)

1.2.1 Preliminaries on martingales

Let {di,Fi}n
i=1 be such that di are Fi measurable random variables where {Fi}n

i=1 forms a filtration of a sigma

field F , E [|di|] < ∞ and E [di | Fi] = 0. We call {di,Fi}n
i=1 a martingale difference sequence. The partial

sums of a martingale difference sequence form a martingale.

In order to control the tail distribution of a martingale, one needs to make some assumptions on the behavior

of the increments, di. A common assumption which is used in the classical Hoeffding’s inequality is that |di| ≤ ci

almost surely where ci ∈ R. Then, Hoeffding’s inequality yields

Pr

[
n

∑
i=1

di ≥ x

]
≤ exp

(
− x2

2∑
n
i=1 c2

i

)
, ∀x > 0.

Therefore, Hoeffding’s inequality is useful if one can derive an almost sure bound on the sum of squared

magnitudes by a scalar, ∑
n
i=1 c2

i . A weaker assumption which allows Hoeffding’s inequality to be applicable

for a much broader class of martingales is that the increments are conditionally subgaussian2. In this setting,

one can use Hoeffding’s inequality when the sum of squared subgaussian norms is almost surely bounded by a

scalar.

The classical Freedman’s inequality is a martingale concentration inequality which has the advantage that

one need not require an almost sure bound on the sum of squared magnitudes. Freedman’s inequality can

roughly be stated as follows:

Pr

[
n

∑
i=1

di ≥ x and Bn ≤ y

]
≤ exp

(
− Cx2

x+ y

)
∀x,β > 0,

where Bt is some process derived from ∑
t
i=1 di. Notice that a high probability bound of y on Bn yields a high

probability bound of
√

y on ∑
n
i=1 di, whereas Hoeffdings inequality requires an almost sure bound of ∑

n
i=1 c2

i on

the sum of squared magnitudes in order to achieve a high probability bound of
√

∑
n
i=1 c2

i on ∑
n
i=1 di. Bt can be

defined in many ways and there are various forms of Freedman’s inequality which use different selections of Bt .

2A random variable is subgaussian if its tail distribution resembles the gaussian tail distribution. For a more detailed description see
Section 6.2.

4

Some of these processes, together with an accompanying version of Freedman’s inequality using that process

follow below:

Definition 1.1. Let {di,Fi}n
i=1 be a martingale difference sequence. Let vari−1 = E

[
d2

i | Fi−1
]
. Let Vart =

∑
t
i=1 vari−1. The predictable process (Vart)

n
t=1 is called the sum of conditional variances (SCV).

Theorem 1.2 ([13, Theorem 1.6]). Let {di,Fi}n
i=1 be a martingale difference sequence. Assume that |di| ≤ c

for every i almost surely. Then, for every x,y > 0

Pr

[
n⋃

i=1

{
t

∑
i=1

di ≥ x and Vart ≤ y

}]
≤ exp

(
− c2x2

2(cx+ y)

)
.

Remark 1.3. de la Peña [10] later proved a similar result which relaxes the almost sure bound on the increments

and instead assumes a Bernstein style conditional bound on the moments of di. Theorem 1.2 yields a high

probability bound of
√

y on ∑
n
i=1 di if one can prove a high probability bound of y on the SCV process.

Definition 1.4. Let {di,Fi}n
i=1 be a martingale difference sequence. Let vi−1 be Fi−1 measureable and minimal

such that for all λ > 0 we have E [exp(λdi) | Fi−1] ≤ exp
(

λ 2

2 vi−1

)
. Let Vt = ∑

t
i=1 vi−1. The predictable

process (Vt)
n
t=1 is called the sum of squared conditional subgaussian norms (SSCSN).

Theorem 1.5 ([11, Theorem 2.6]). Let {di,Fi}n
i=1 be a martingale difference sequence. Assume, for 1≤ i≤ n,

there exist Fi−1 measureable random variables vi−1 such that for all λ > 0 we have E [exp(λdi) | Fi−1] ≤
exp
(

λ 2

2 vi−1

)
. Then, for every x,y > 0

Pr

[
n⋃

i=1

{
t

∑
i=1

di ≥ x and Vt ≤ y

}]
≤ exp

(
− x2

2y

)
.

Remark 1.6. Notice that Theorem 1.5 does not require an almost sure bound on the increments di. Instead, it

assumes subgaussian increments. Theorem 1.5 yields a high probability bound of
√

y if one can prove a high

probability bound of y on the SSCSN process.

It may be challenging to obtain an a high probability bound on the SCV or SSCSN processes. Instead, it

is sometimes useful to consider the following process. Indeed, by Lemma 1.8 the sum of squared magnitudes

(SSCM) process bounds both the SCV process and the SSCSN process. For a statement of a concentration

inequality similar to Freedman’s inequality which uses a process similar to the SSCM process, see [31, Theo-

rem 3.14].

Definition 1.7. Let {di,Fi}n
i=1 be a martingale difference sequence. Suppose that |di| ≤ mi−1 where mi−1 is

Fi−1 measureable. Let Mt = ∑
t
i=1 m2

i−1. The predictable process (Mt)
n
t=1 is called the sum of squared condi-

tional magntitudes (SSCM).

Lemma 1.8. Suppose |di| ≤ mi−1 where mi−1 is Fi−1 measurable. Then, vari−1 ≤ mi−1 and vi−1 ≤ m2
i−1.

Consequently, Vart ≤Mt and Vt ≤Mt for all t ∈ [n].

Proof (of Lemma 1.8). The first part of the claim follows because E [vari−1 | Fi−1] = E
[

d2
i | Fi−1

]
≤ m2

i−1,

since |di| ≤mi−1 which is Fi−1 measurable. The second part of the claim follows because E [exp(λdi) | Fi−1]≤
exp
(

λ 2

2 m2
i−1

)
by Hoeffding’s Lemma (Lemma A.5). �

5

In this thesis we derive a generalization of Freedman’s inequality (as formulated in Theorem 1.5). While

Theorem 1.5 is useful in the setting where one can obtain a high probability bound on the SSCSN process

by a scalar, our Theorem 1.11 can be used with a high probability upper bound on the SSCSN by a random

quantity with a particular structure. This random quantity contains a scaled and translated version of the original

martingale – and we will refer to this entanglement between the SSCSN process and the original martingale as

the chicken and egg phenomenon. Theorem 1.11 is used to derive a high probability bound on the error of the

final iterate of Algorithm 1. While Theorem 1.11 requires one to control the SSCSN process, our application of

Theorem 1.11 begins by bounding the SSCM process. Lemma 1.8 implies that this is sufficient.

1.3 Our contributions
Our main results are bounds on the error of the final iterate of stochastic gradient descent for non-smooth,

convex functions.

Strongly convex and Lipschitz functions. We prove an Ω(log(T)/T) lower bound, even in the non-stochastic

case, and an O(log(T) log(1/δ)/T) upper bound with probability 1−δ .

Lipschitz functions. We prove an Ω(log(T)/
√

T) lower bound, even in the non-stochastic case, and an

O(log(T) log(1/δ)/
√

T) upper bound with probability 1−δ .

1.3.1 High probability upper bounds

Theorem 1.9. Suppose f is 1-strongly convex and 1-Lipschitz. Suppose that ẑt (i.e., E [ĝt]− ĝt , the noise of the

stochastic gradient oracle) has norm at most 1 almost surely. Consider running Algorithm 1 for T iterations

with step size ηt = 1/t. Let x∗ = argminx∈X f (x) and δ ∈ (0,1) be arbitrary. Then, with probability at least

1−δ ,

f (xT+1)− f (x∗) ≤ O
(

log(T) log(1/δ)

T

)
.

Theorem 1.10. Suppose f is 1-Lipschitz and X has diameter 1. Suppose that ẑt (i.e., E [ĝt]− ĝt , the noise of

the stochastic gradient oracle) has norm at most 1 almost surely. Consider running Algorithm 1 for T iterations

with step size ηt = 1/
√

t. Let x∗ = argminx∈X f (x) and δ ∈ (0,1) be arbitrary. Then, with probability at least

1−δ ,

f (xT+1)− f (x∗) ≤ O
(

log(T) log(1/δ)√
T

)
.

The assumptions on the strong convexity parameter, Lipschitz parameter, and diameter are without loss of

generality; see Section 6.1. The bounded noise assumption for the stochastic gradient oracle is made only for

simplicity; our analysis can be made to go through if one relaxes the a.s. bounded condition to a subgaussian

condition; see Section 6.3. We also remark that a linear dependence on log(1/δ) is necessary for strongly

convex functions; see Section 5.2.

Our main probabilistic tool to prove Theorem 1.9 and Theorem 1.10 is a new extension of the classic

Freedman inequality [13] to a setting in which the martingale exhibits a curious phenomenon. Ordinarily a

martingale is roughly bounded by the square root of the sum of squared magnitudes (SSCM) (this is the content

of Freedman’s inequality). We consider a setting in which the SSCM is itself bounded by (a linear transformation

of) the martingale. We refer to this as a “chicken and egg” phenomenon.

6

Theorem 1.11 (Generalized Freedman). Let {di,Fi}n
i=1 be a martingale difference sequence. Suppose vi−1, for

i ∈ [n], are positive and Fi−1-measurable random variables such that E [exp(λdi) | Fi−1]≤ exp
(

λ 2

2 vi−1

)
for

all i ∈ [n], λ > 0. Let St = ∑
t
i=1 di and Vt = ∑

t
i=1 vi−1. Let αi ≥ 0 and set α = maxi∈[n] αi. Then

Pr

 n⋃
t=1

St ≥ x and Vt ≤
t

∑
i=1

αidi +β

 ≤ exp

(
− x

4α +8β/x

)
∀x,β > 0.

The proof of Theorem 1.11 appears in Section 4.1. Freedman’s Inequality [13] (as formulated in The-

orem 1.5, up to constants) simply omits the terms highlighted in yellow, i.e., it sets α = 0. Observe that

Theorem 1.11 assumes subgaussian increments as in [11] (as opposed to [10, 13] which assumes bounded in-

crements).

1.3.2 Lower bounds

Theorem 1.12. For any T and any constant c > 0, there exists a convex function fT : X → R, where X

is the unit Euclidean ball in RT , such that fT is (3/c)-Lipschitz and (1/c)-strongly convex, and satisfies the

following. Suppose that Algorithm 1 is executed from the initial point x1 = 0 with step sizes ηt = c/t. Let

x∗ = argminx∈X fT (x). Then

fT (xT)− fT (x∗) ≥
logT
4c ·T

(1.2)

More generally, any weighted average x̄ of the last k iterates has

fT (x̄)− fT (x∗) ≥
ln(T)− ln(k)

4c ·T
. (1.3)

Thus, suffix averaging must average a constant fraction of iterates to achieve the optimal O(1/T) error.

Remark 1.13. Let L= (3/c) and α = (1/c). Then, the lower bound from Eq. (1.2) can be re-written as L2

36α

logT
T .

This is within a constant factor of the guaranteed upper bound of 17L2

α

1+logT
T by Shamir and Zhang [43].

Theorem 1.14. For any T and any constant c > 0, there exists a convex function fT : X → R, where X is the

unit Euclidean ball in RT , such that fT is (1/c)-Lipschitz, and satisfies the following. Suppose that Algorithm 1

is executed from the initial point x1 = 0 with step sizes ηt = c/
√

t with c > 0. Let x∗ = argminx∈X fT (x). Then

fT (xT)− fT (x∗) ≥
logT

32c
√

T
. (1.4)

More generally, any weighted average x̄ of the last k iterates has

fT (x̄)− fT (x∗) ≥
ln(T)− ln(k)

32c
√

T
. (1.5)

Furthermore, the value of f strictly monotonically increases for the first T iterations:

f (xi+1) ≥ f (xi)+
1

64c
√

T (T − i+1)
∀i ∈ [T]. (1.6)

Remark 1.15. Let L = (1/c) and R = 1. Then, the lower bound from Eq. (1.4) can be written as (R/c +

7

cL2) logT
64
√

T
. This is within a constant factor of the guaranteed upper bound of (R/c+ cL2)2+logT√

T
by Shamir and

Zhang [43].

Remark 1.16. In order to incur a logT factor in the error of the T iterate, Theorem 1.12 and Theorem 1.14

constructs a function fT parameterized by T . It is also possible to create a single function f , independent

of T , which incurs an additional factor very slightly below logT for infinitely many T . This is described in

Theorem 5.1 and Theorem 5.2.

1.3.3 High probability upper bound for suffix averaging

Interestingly, our proof of Theorem 1.9 requires understanding the suffix average. (In fact this connection is

implicit in [43]). Hence, en route, we prove the following high probability bound on the error of the average of

the last half of the iterates of SGD.

Theorem 1.17. Suppose f is 1-strongly convex and 1-Lipschitz. Consider running Algorithm 1 for T iterations

with step size ηt = 1/t and assume T is even. Let x∗ = argminx∈X f (x) and δ ∈ (0,1) be arbitrary. Then, with

probability at least 1−δ ,

f
(

1
T/2+1

T

∑
t=T/2

xt

)
− f (x∗) ≤ O

(
log(1/δ)

T

)
.

Remark 1.18. This upper bound is optimal. Indeed, Section 5.2 shows that the error is Ω(log(1/δ)/T) even

for the one-dimensional function f (x) = x2/2.

Theorem 1.17 is an improvement over the O
(

log(log(T)/δ)/T
)

bounds independently proven by Rakhlin

et al. [36] (for suffix averaging) and Hazan and Kale [17] (for EpochGD). Once again, we defer the statement

of the theorem for general strongly-convex and Lipschitz parameters to Section 6.1.

1.4 Techniques
Final iterate. When analyzing gradient descent, it simplifies matters greatly to consider the expected error.

This is because the effect of a gradient step is usually bounded by the subgradient inequality; so by linearity of

expectation, one can plug in the expected subgradient, thus eliminating the noise [7, §6.1].

High probability bounds are more difficult. (Indeed, it is not a priori obvious that the error of the final iterate

is tightly concentrated.) A high probability analysis must somehow control the total noise that accumulates from

each noisy subgradient step. Fortunately, the accumulated noise forms a zero-mean martingale but unfortunately,

the martingale depends on previous iterates in a highly nontrivial manner. Indeed, suppose (Xt) is the martingale

of the accumulated noise and let vart−1 = E
[
(Xt −Xt−1)

2 | X1, . . . ,Xt−1
]

be the conditional variance at time t

and let Vart = ∑
t
i=1 vari−1 be the sum of conditional variances (SCV). Freedman’s inequality roughly states that

XT .
√

VarT . A significant technical step of our analysis (Lemma 3.4) shows that the sum of squared conditional

magnitudes (SSCM), (Mt)t≤T of the accumulated noise exhibits the “chicken and egg” phenomenon alluded to

in the discussion of Theorem 1.11. Roughly speaking, we have MT ≤ αXT−1 +β (where α,β > 0 are scalars),

which implies a bound on VarT since Lemma 1.8 states that VarT ≤ MT . Therefore, an inductive argument

using Freedman’s inequality shows that XT .
√

αXT−1 +β .
√

α
√

αXT−2 +β +β . · · · . This naive analysis

invokes Freedman’s inequality T times, so a union bound incurs an extra factor logT in the bound on XT . This

8

can be improved via a trick [6]: by upper-bounding the SSCM by a power-of-two (and by T), it suffices to

invoke Freedman’s inequality logT times, which only incurs an extra factor log logT in the bound on XT .

Notice that this analysis actually shows that Xt .
√

Mt for all t ≤ T , whereas the original goal was only

to control XT . Any analysis that simultaneously controls all Xt , t ≤ T , must necessarily incur an extra factor

log logT . This is a consequence of the Law of the Iterated Logarithm3. Previous work employs exactly such an

analysis [17, 22, 36] and incurs the loglogT factor. Rakhlin et al. [36] explicitly raise the question of whether

this log logT factor is necessary.

Our work circumvents this issue by developing a generalization of Freedman’s Inequality (Theorem 1.11)

to handle martingales of the above form, which ultimately yields optimal high-probability bounds. We are no

longer hindered by the Law of the Iterated Logarithm because our variant of Freedman’s Inequality does not

require us to have fine grained control over the martingale over all times.

Another important tool that we employ is a new bound on the Euclidean distance between the iterates

computed by SGD (Lemma 3.3). This is useful because, by the subgradient inequality, the change in the error

at different iterations can be bounded using the distance between iterates. Various naive approaches yield a

bound of the form ‖xa− xb‖2 ≤ (b−a)2

min{a2,b2} (in the strongly convex case). We derive a much stronger bound,

comparable to ‖xa− xb‖2 ≤ |b−a|
min{a2,b2} . Naturally, in the stochastic case, there are additional noise terms that

contribute to the technical challenge of our analysis. Nevertheless, this new distance bound could be useful in

further understanding non-smooth gradient descent (even in the non-stochastic setting).

As in previous work on the strongly convex case [43], the error of the suffix average plays a critical role in

bounding the error of the final iterate. Therefore, we also need a tight high probability bound on the error of the

suffix average.

Suffix averaging. To complete the optimal high probability analysis on the final iterate, we need a high proba-

bility bound on the suffix average that avoids the loglogT factor. As in the final iterate setting, the accumulated

noise for the suffix average forms a zero-mean martingale, (Xt)
T
T/2, but now the squared conditional magnitude

at step t satisfies mt ≤ αtmt−1 +βtŵt
√

mt−1 + γt , where ŵt is a conditionally mean-zero random variable and

αt ,βt and γt are constants. In [36], using Freedman’s Inequality combined with the trick from [6], they obtain a

bound on a similar martingale but do so over all time steps and incur a loglogT factor. However, our goal is only

to bound XT and according to Freedman’s Inequality XT .
√

MT , where MT is the sum of squared conditional

magnitudes at time T . So, our goal becomes to bound MT . To do so, we develop a probabilistic tool to bound

the t iterate of a stochastic process that satisfies a recursive dependence on the (t−1) iterate similar to the one

exhibited by Mt .

Theorem 1.19. Let (Xt)
T
t=1 be a stochastic process and let (Ft)

T
t=1 be a filtration such that Xt is Ft measurable

and Xt is non-negative almost surely. Let αt ∈ [0,1) and βt ,γt ≥ 0 for every t. Assume that E [exp(λX1)] ≤
exp(λK) for λ ∈ (0,1/K] where K = max1≤t≤T

(
2γt

1−αt
, 2β 2

t
1−αt

)
. Let ŵt be a mean-zero random variable condi-

tioned on Ft such that |ŵt | ≤ 1 almost surely for every t. Suppose that Xt+1 ≤ αtXt +βtŵt
√

Xt + γt for every t.

Then, the following hold.

• For every t, Pr [Xt ≥ K log(1/δ)]≤ eδ .

3Let Xt ∈ {−1,+1} be uniform and i.i.d. and ST = ∑
T
t=1 Xt . The Law of the Iterated Logarithm states that limsupT

ST√
2T log logT = 1

a.s.

9

• More generally, if σ1, . . . ,σT ≥ 0, then Pr
[

∑
T
t=1 σtXt ≥ K log(1/δ)∑

T
t=1 σt

]
≤ eδ .

The recursion Xt+1 ≤ αt +βtŵt
√

Xt +γt presents two challenges that make it difficult to analyze. Firstly, the

fact that it is a non-linear recurrence makes it unclear how one should unwind Xt+1. Furthermore, unraveling

the recurrence introduces many ŵt terms in a non-trivial way. Interestingly, if we instead consider the moment

generating function (MGF) of Xt+1, then we can derive an analogous recursive MGF relationship which re-

moves this non-linear dependence and removes the ŵt term. This greatly simplifies the recursion and leads to a

surprisingly clean analysis. The proof of Theorem 1.19 can be found in Section 4.2. (The recursive MGF bound

which removes the non-linear dependence is by Claim 4.6.)

Deterministic lower bound. As mentioned above, a challenge with non-smooth gradient is that the error of

the T iterate may not monotonically decrease with T , even in the deterministic setting. The full extent of this

non-decreasing behavior seems not to have been previously understood. We develop a technique that forces the

error to be monotonically increasing for Ω(T) consecutive iterations. The idea is as follows. If GD takes a step

in a certain direction, a non-differentiable point can allow the function to suddenly increase in that direction. If

the function were one-dimensional, the next iteration of GD would then be guaranteed to step in the opposite

direction, thereby decreasing the function. However, in higher dimensions, the second gradient step could be

nearly orthogonal to the first step, and the function could have yet another non-differentiable point in this second

direction. In sufficiently high dimensions, this behavior can be repeated for many iterations. The tricky aspect

is designing the function to have this behavior while also being convex. We show that this is possible, leading

to the unexpectedly large error in the T iteration. We believe that this example illuminates some non-obvious

behavior of gradient descent.

10

Chapter 2

Finite Dimensional Lower Bounds

2.1 Lower bound on error of final iterate, strongly convex case
In this section we prove that the final iterate of SGD for strongly convex functions has error that is suboptimal by

a factor Ω(logT), even in the non-stochastic case. We give the proof of Theorem 1.12 in the case where c = 1.

Theorem 1.12 can be obtained in full generality from the analysis in this section by applying the following

reduction, which is easily verifiable via induction.

Lemma 2.1. Suppose that executing Algorithm 1 over the feasible region X ⊂ Rn, on the convex function

f : Rn 7→ R, using initial point x1, step-sizes ηt , and map σ such that σ(x) ∈ ∂ f (x) as a subgradient oracle,

yields the iterates x1,x2, Then, executing Algorithm 1 over X on the function (1/c) · f , using initial point

x1, step-sizes c ·ηt , and subgradient oracle (1/c)σ also yields the iterates x1,x2,

When c = 1, we define a function f = fT , depending on T , for which the final iterate produced by Algo-

rithm 1 has f (xT) = Ω(log(T)/T) and minx∈X f (x) ≤ 0, thereby proving (1.2). Let X be the Euclidean unit

ball in RT . Define f : X → R and hi ∈ RT for i ∈ [T +1] by

f (x) = max
i∈[T+1]

Hi(x) where Hi(x) = hT
i x+

1
2
‖x‖2

hi, j =

a j (if 1≤ j < i)

−1 (if i = j ≤ T)

0 (if i < j ≤ T)

and a j =
1

2(T +1− j)
(for j ∈ [T]).

It is easy to see that f is 1-strongly convex due to the 1
2 ‖x‖

2 term. Furthermore f is 3-Lipschitz over X

because ‖∇Hi(x)‖ ≤ ‖hi‖+ 1 and ‖hi‖2 ≤ 1+ 1
4 ∑

T
j=1

1
(T+1− j)2 < 1+ 1

2 . Finally, the minimum value of f over

X is non-positive because f (0) = 0.

Subgradient oracle. In order to execute Algorithm 1 on f we must specify a subgradient oracle. First, we

require the following claim, which follows from standard facts in convex analysis [19, Theorem 4.4.2].

Claim 2.2. ∂ f (x) is the convex hull of { hi + x : i ∈I (x) }, where I (x) = { i : Hi(x) = f (x) }.

Our subgradient oracle is non-stochastic: given x, it simply returns hi′+ x where i′ = minI (x).

11

Explicit description of iterates. Next we will explicitly describe the iterates produced by executing Algo-

rithm 1 on f . Define the points zt ∈ RT for t ∈ [T +1] by z1 = 0 and

zt, j =

1− (t− j−1)a j

t−1
(if 1≤ j < t)

0 (if t ≤ j ≤ T).
(for t > 1).

We will show inductively that these are precisely the first T iterates produced by Algorithm 1 when using the

subgradient oracle defined above. The following claim is easy to verify from the definition of zt .

Claim 2.3.

• For t ∈ [T +1], zt is non-negative. In particular, zt, j ≥ 1
2(t−1) for j < t and zt, j = 0 for j ≥ t.

• ‖z1‖= 0 and ‖zt‖2 ≤ 1
t−1 for t > 1. Thus zt ∈X for all t ∈ [T +1].

The “triangular shape” of the hi vectors allows us to determine the value and subdifferential at zt .

Claim 2.4. f (zt) = Ht(zt) for all t ∈ [T +1]. The subgradient oracle for f at zt returns the vector ht + zt .

Proof. We claim that hT
t zt = hT

i zt for all i > t. By definition, zt is supported on its first t − 1 coordinates.

However, ht and hi agree on the first t−1 coordinates (for i > t). This proves the subclaim.

Next we claim that zT
t ht > zT

t hi for all 1≤ i < t. This also follows from the definition of zt and hi:

zT
t (ht −hi) =

t−1

∑
j=1

zt, j(ht, j−hi, j) =
t−1

∑
j=i

zt, j(ht, j−hi, j) = zt,i(ai +1)+
t−1

∑
j=i+1

zt, ja j > 0.

These two claims imply that Ht(zt) ≥ Hi(zt) for all i ∈ [T + 1], and therefore f (zt) = Ht(zt). Moreover

I (zt) = { i : Hi(zt) = f (zt) }= {t, . . . ,T +1}. Thus, when evaluating the subgradient oracle at the vector zt , it

returns the vector ht + zt . �

Since the subgradient returned at zt is determined by Claim 2.4, and the next iterate of SGD arises from a

step in the opposite direction, a straightforward induction proof allows us to show the following lemma. Recall

that ηt = 1/t since we assume c = 1.

Lemma 2.5. For the function f constructed in this section, the vector xt in Algorithm 1 equals zt , for every

t ∈ [T +1].

Proof. By definition, z1 = x1 = 0. By Claim 2.4, the subgradient returned at x1 is h1 + x1 = h1, so Algorithm 1

sets y2 = x1−η1h1 = e1, the first standard basis vector. Then Algorithm 1 projects onto the feasible region,

obtaining x2 = ΠX (y2), which equals e1 since y2 ∈X . Since z2 also equals e1, the base case is proven.

So assume zt = xt for 2 ≤ t < T ; we will prove that zt+1 = xt+1. By Claim 2.4, the subgradient returned at

12

xt is ĝt = ht + zt . Then Algorithm 1 sets yt+1 = xt −ηt ĝt . Since xt = zt and ηt = 1/t, we obtain

yt+1, j = zt, j−
1
t
(ht, j + zt, j)

=
t−1

t
zt, j−

1
t

ht, j

=
t−1

t

{
1−(t− j−1)a j

t−1 (for j < t)

0 (for j ≥ t)

}
− 1

t

a j (for j < t)

−1 (for j = t)

0 (for j > t)

=

1
t

{
1− (t− j−1)a j (for j < t)

0 (for j ≥ t)

}
− 1

t

a j (for j < t)

−1 (for j = t)

0 (for j > t)

=

1
t

1− (t− j)a j (for j < t)

1 (for j = t)

0 (for j ≥ t +1)

So yt+1 = zt+1. Since xt+1 = ΠX (yt+1) is defined to be the projection onto X , and yt+1 ∈X by Claim 2.3, we

have xt+1 = yt+1 = zt+1. �

The value of the final iterate is easy to determine from Lemma 2.5 and Claim 2.4:

f (xT+1) = f (zT+1) = HT+1(zT+1) ≥
T

∑
j=1

hT+1, j · zT+1, j ≥
T

∑
j=1

1
2(T +1− j)

· 1
2T

>
logT
4T

.

(Here the second inequality uses Claim 2.3.) This proves (1.2). A small modification of the last calcula-

tion proves (1.3); details may be found in Claim 2.11 in the case where c = 1 (the general case follows from

Lemma 2.1). This completes the proof of Theorem 1.12.

2.2 Lower bound on error of final iterate, Lipschitz case
In this section we prove a lower bound result for Lipschitz functions analogous to those in Section 2.1. Through-

out this section we will assume that ηt =
c√
t where c = 1. Specifically, we define a function f = fT , depending

on T , for which the final iterate produced by Algorithm 1 has f (xT) = Ω(log(T)/
√

T), thereby proving (1.4)

when c = 1. Then, Eq. (1.4) for arbitrary c > 0 is a corollary of the result with c = 1 and Lemma 2.1.

The function f is defined as follows. As before, X denotes the Euclidean unit ball in RT . For i∈ [T], define

the positive scalar parameters

ai =
1

8(T − i+1)
bi =

√
i

2
√

T
.

13

Define f : X → R and hi ∈ RT for i ∈ [T +1] by

f (x) = max
i∈[T+1]

hT
i x where hi, j =

a j (if 1≤ j < i)

−bi (if i = j ≤ T)

0 (if i < j ≤ T)

.

Note that f is 1-Lipschitz over X because

‖hi‖2 ≤
T

∑
j=1

a2
j +b2

T =
1
64

T

∑
j=1

1
j2 +

1
4

<
1
2
.

Also, the minimum value of f over X is non-positive because f (0) = 0.

Subgradient oracle. In order to execute Algorithm 1 on f we must specify a subgradient oracle. Similar to

Claim 2.2, [19, Theorem 4.4.2] implies

Claim 2.6. ∂ f (x) is the convex hull of { hi : i ∈I (x) }, where I (x) =
{

i : hT
i x = f (x)

}
.

Our subgradient oracle is as follows: given x, it simply returns hi′+ x where i′ = minI (x).

Explicit description of iterates. Next we will explicitly describe the iterates produced by executing Algo-

rithm 1 on f . Define the points zt ∈ RT for t ∈ [T +1] by z1 = 0 and

zt, j =

(

b j√
j
− a j

t−1

∑
k= j+1

1√
k

)
(if 1≤ j < t)

0 (if t ≤ j ≤ T).

(for t > 1).

We will show inductively that these are precisely the first T iterates produced by Algorithm 1 when using the

subgradient oracle defined above.

Claim 2.7. For t ∈ [T +1], zt is non-negative. In particular, zt, j ≥ 1
4
√

T
for j < t and zt, j = 0 for j ≥ t.

Proof. By definition, zt, j = 0 for all j ≥ t. For j < t,

zt, j =

(
b j√

j
−a j

t−1

∑
k= j+1

1√
k

)

=

(
1

2
√

T
− 1

8(T − j+1)

t−1

∑
k= j+1

1√
k

)
(by definition of a j and b j)

≥ 1
2
√

T
− 1

4(T − j+1)
t−1− j√

t−1
(by Claim A.10)

≥ 1
2
√

T
− 1

4
√

T
(by Claim A.11), replacing t with t +1

=
1

4
√

T
.

�

14

Claim 2.8. zt, j ≤ 1/
√

T for all j. In particular, zt ∈X (the unit ball in RT).

Proof. We have zt, j = 0 for all j ≥ t, and for j < t, we have

zt, j =

(
b j√

j
−a j

t

∑
k= j+1

1√
k

)
≤

b j√
j
=

1
2
√

T
.

Since Claim 2.7 shows that zt ≥ 0, we have ‖zt‖ ≤ 1, and therefore zt ∈X . �

The “triangular shape” of the hi vectors allows us to determine the value and subdifferential at zt .

Claim 2.9. f (zt) = hT
t zt for all t ∈ [T +1]. The subgradient oracle for f at zt returns the vector ht .

Proof. We claim that hT
t zt = hT

i zt for all i > t. By definition, zt is supported on its first t − 1 coordinates.

However, ht and hi agree on the first t−1 coordinates (for i > t). This proves the subclaim.

Next we claim that zT
t ht > zT

t hi for all 1≤ i < t. This also follows from the definition of zt and hi:

zT
t (ht −hi) =

t−1

∑
j=1

zt, j(ht, j−hi, j) (zt is supported on first t−1 coordinates)

=
t−1

∑
j=i

zt, j(ht, j−hi, j) (hi and ht agree on first i−1 coordinates)

= zt,i(ai +bi)+
t−1

∑
j=i+1

zt, ja j

> 0.

These two claims imply that hT
t zt ≥ hT

i zt for all i ∈ [T + 1], and therefore f (zt) = hT
t zt . Moreover I (zt) ={

i : hT
i zt = f (zt)

}
= {t, . . . ,T +1}. Thus, when evaluating the subgradient oracle at the vector zt , it returns the

vector ht . �

Since the subgradient returned at zt is determined by Claim 2.9, and the next iterate of SGD arises from a

step in the opposite direction, a straightforward induction proof allows us to show the following lemma.

Lemma 2.10. For the function f constructed in this section, the vector xt in Algorithm 1 equals zt , for every

t ∈ [T +1].

Proof. The proof is by induction. By definition x1 = 0 and z1 = 0, establishing the base case.

So assume zt = xt for t ≤ T ; we will prove that zt+1 = xt+1. Recall that Algorithm 1 sets yt+1 = xt −ηtgt ,

and that ηt =
1√
t . By the inductive hypothesis, xt = zt . By Claim 2.9, the algorithm uses the subgradient gt = ht .

15

Thus,

yt+1, j = zt, j−
1√
t
ht, j

=

{ b j√
j −a j ∑

t−1
k= j+1

1√
k

(for 1≤ j < t)

0 (for j ≥ t)

}
− 1√

t

a j (for 1≤ j < t)

−bt (for j = t)

0 (for j > t)

=

b j√

j −a j ∑
t
k= j+1

1√
k

(for j < t)
bt√

t (for j = t)

0 (for j > t)

So yt+1 = zt+1. Since xt+1 = ΠBT (yt+1) by definition, and yt+1 ∈X by Claim 2.8, we have xt+1 = yt+1 =

zt+1. �

The value of the final iterate is easy to determine from Lemma 2.5 and Claim 2.4:

f (xT+1) = f (zT+1) = hT
T+1zT+1 =

T

∑
j=1

hT+1, j · zT+1, j ≥
T

∑
j=1

1
8(T +1− j)

· 1
4
√

T
>

logT
32
√

T
.

(Here the second inequality uses Claim 2.7.) This proves (1.4). A small modification of the last calculation

proves (1.5) in the case where c = 1 (the general case follows from Lemma 2.1); details may be found in

Claim 2.12. The proof of (1.6) may be found in Subsection 2.3.3. This completes the proof of Theorem 1.14.

2.3 Omitted proofs for the lower bounds

2.3.1 Strongly convex case

The following claim proves Eq. (1.3) when c = 1. The result in full generality follows then as a corollary of the

case when c = 1 and Lemma 2.1.

Claim 2.11. For any k ∈ [T], let x̄ = ∑
T+1
t=T−k+2 λtxt be any convex combination of the last k iterates. Then

f (x̄) ≥ ln(T)− ln(k)
4T

.

Proof. By Lemma 2.5, xt = zt ∀t ∈ [T +1]. By Claim 2.3, every zt ≥ 0 so x̄≥ 0. Moreover, zt, j ≥ 1/2T for all

16

T − k+2≤ t ≤ T +1 and 1≤ j ≤ T − k+1. Consequently, x̄ j ≥ 1/2T for all 1≤ j ≤ T − k+1. Thus,

f (x̄) ≥ hT
T+1x̄ (by definition of f)

=
T−k+1

∑
j=1

hT+1, j x̄ j︸︷︷︸
≥1/2T

+
T

∑
j=T−k+2

hT+1, j x̄ j︸ ︷︷ ︸
≥0

≥
T−k+1

∑
j=1

a j ·
1

2T

=
1

2T

T−k+1

∑
j=1

1
2(T +1− j)

≥ 1
4T

T−k+1

∑
j=1

1
T +1− j

≥ 1
4T

∫ T−k+1

1

1
T +1− x

dx

=
log(T)− log(k)

4T

�

2.3.2 Lipschitz case

The following claim proves Eq. (1.5) in the case when c = 1. The result in full generality follows from the case

c = 1 and Lemma 2.1.

Claim 2.12. For any k ∈ [T], let x̄ = ∑
T+1
t=T−k+2 λtxt be any convex combination of the last k iterates. Then

f (x̄) ≥ ln(T)− ln(k+1)
32
√

T
.

Proof. By Lemma 2.10, xt = zt for all t. By Claim 2.7, every zt ≥ 0 so x̄ ≥ 0. Moreover, zt, j ≥ 1/4
√

T for all

T − k+2≤ t ≤ T +1 and 1≤ j ≤ T − k+1, and zt,T ≥ 0 for all t ≤ T +1. Consequently, x̄ j ≥ 1/4
√

T for all

17

1≤ j ≤ T − k+1 and x̄T ≥ 0. Thus,

f (x̄) ≥ hT
T+1x̄ (by definition of f)

=
T−k+1

∑
j=1

hT+1, jx̄ j +
T

∑
j=T−k+2

hT+1, jx̄ j︸ ︷︷ ︸
≥0

≥
T−k+1

∑
j=1

a j
1

4
√

T

=
1

4
√

T

T−k+1

∑
j=1

1
8(T − j+1)

≥ 1
32
√

T

∫ T−k+1

1

1
T − x+1

dx

=
log(T)− log(k)

32
√

T

�

2.3.3 Monotonicity

The following claim completes the proof of Eq. (1.6) when c = 1. The general result follows as a consequence

of the case when c = 1 and Lemma 2.1.

Claim 2.13. For any i≤ T , we have f (xi+1)≥ f (xi)+1/32
√

T (T − i+1).

Proof.

f (xi+1)− f (xi) = hT
i+1zi+1−hT

i zi (by Claim 2.9)

=
i

∑
j=1

(hi+1, jzi+1, j−hi, jzi, j)

=
i−1

∑
j=1

(hi+1, jzi+1, j−hi, jzi, j)+(hi+1,izi+1,i−hi,i zi,i︸︷︷︸
=0

)

=
i−1

∑
j=1

a j(zi+1, j− zi, j)+aizi+1,i

=
i−1

∑
j=1

a j ·
(−a j√

i

)
+

1
8(T − i+1)

zi+1,i

≥ − 1
64
√

i

i−1

∑
j=1

(1
T − j+1

)2
+

1
32
√

T (T − i+1)
(by Claim 2.7)

≥ 1
64
√

T (T − i+1)
(by Claim 2.14)

�

18

Claim 2.14. For any i≤ T
1√

i

i−1

∑
j=1

(1
T − j+1

)2
≤ 1√

T
· 1

T − i+1
.

Proof. Applying Claim A.12 shows that

i−1

∑
j=1

(1
T − j+1

)2
=

T

∑
`=T−i+2

1
`2 ≤

1
T − i+1

− 1
T

=
i−1

T (T − i+1)
≤ =

i
T (T − i+1)

.

So it suffices to prove that √
i

T (T − i+1)
≤ 1√

T
· 1

T − i+1
.

This obviously holds as i≤ T . �

19

Chapter 3

High Probability Bounds

3.1 Upper bound on error of final iterate, strongly convex case
We now turn to the proof of the upper bound on the error of the final iterate of SGD, in the case where f

is 1-strongly convex and 1-Lipschitz (Theorem 1.9). Recall that the step size used by Algorithm 1 in this

case is ηt = 1/t. We will write ĝt = gt − ẑt , where ĝt is the vector returned by the oracle at the point xt ,

gt ∈ ∂ f (xt), and ẑt is the noise. Let Ft = σ(ẑ1, . . . , ẑt) be the σ -algebra generated by the first t steps of SGD.

Finally, recall that ‖ẑt‖ ≤ 1 and E [ẑt | Ft−1] = 0. Without loss of generality, we may assume that T ≥ 4 since

f (xT)− f (x∗) ≤ O(1) for T < 4. Moreover, we may assume without loss of generality that T is even because

f (xT)− f (xT−1)≤ O(1/T).

We begin with the following lemma which can be inferred from the proof of Theorem 1 in Shamir and

Zhang [43]. For completeness, we provide a proof in Section 3.3.

Lemma 3.1. Let f be 1-strongly convex and 1-Lipschitz. Suppose that we run SGD (Algorithm 1) with step

sizes ηt = 1/t. Assume that T is even. Then

f (xT) ≤
1

T/2+1

T

∑
t=T/2

f (xt)︸ ︷︷ ︸
suffix average

+
T/2

∑
k=1

1
k(k+1)

T

∑
t=T−k

〈 ẑt , xt − xT−k 〉︸ ︷︷ ︸
ZT , the noise term

+ O
(

logT
T

)
.

Lemma 3.1 asserts that the error of the last iterate is upper bounded by the sum of the error of the suffix

average and some noise terms (up to the additive O(log(T)/T) term). Thus, it remains to show that the error

due to the suffix average is small with high probability (Theorem 1.17) and the noise terms, which we denote by

ZT , are small. We defer the proof of Theorem 1.17 to Subsection 3.1.3. By changing the order of summation,

we can write

ZT =
T

∑
t=T/2

〈 ẑt , wt 〉 (3.1)

where wt =
t

∑
j=T/2

α j(xt − x j) and α j =
1

(T − j)(T − j+1)
for j ∈ [T −1],

20

and set αT = 0 to ensure a summand of 0 when j = t = T. The main technical difficulty is to show that ZT is small

with high probability. Formally, we prove the following lemma, whose proof is outlined in Subsection 3.1.1.

Lemma 3.2. ZT ≤ O
(

log(T) log(1/δ)
T

)
with probability at least 1−δ .

Given Theorem 1.17 and Lemma 3.2, the proof of Theorem 1.9 is immediate when T is even. In the case where

T is odd, we may apply the argument for T − 1 and then use the fact that f (xT) ≤ f (xT−1)+O(1/T) since

ηt = 1/T and ‖ĝt‖= O(1).

3.1.1 Bounding the noise

The main technical difficulty in the proof is to understand the noise term, which we have denoted by ZT . Notice

that (Zt)T/2≤t≤T is a martingale with respect to (Ft)T/2≤t≤T since E [ẑt | Ft−1] = 0, wt is Ft−1 measurable

and E [|〈 ẑt , wt 〉|]< ∞. The last property holds because we may use the fact that
∥∥xt − x j

∥∥= O(1). The natural

starting point is to better understand the sum of squared magnitudes (SSCM) of ZT . Notice that |〈 ẑt , wt 〉| ≤ ‖wt‖
and wt is Ft−1 measurable. Therefore, we use ∑

T
t=T/2 ‖wt‖2 as the SSCM process of ZT . We we will see

that ∑
T
t=T/2 ‖wt‖2 is bounded by a linear transformation of ZT . This “chicken and egg” relationship inspires

us to derive a new probabilistic tool (generalizing Freedman’s Inequality) to disentangle the SSCM from the

martingale.

The main challenge in analyzing ‖wt‖ is to precisely analyze the distance
∥∥xt − x j

∥∥ between SGD iterates.

A loose bound of
∥∥xt − x j

∥∥2
. (t− j)∑

t−1
i= j
‖ĝi‖2

i2 follows easily from Jensen’s Inequality. We prove the following

tighter bound, which may be of independent interest. The proof is in Section 3.3.

Lemma 3.3. Suppose f is 1-Lipschitz and 1-strongly convex. Suppose we run Algorithm 1 for T iterations with

step sizes ηt = 1/t. Let a < b. Then,

‖xa− xb‖2 ≤
b−1

∑
i=a

‖ĝi‖2

i2
+2

b−1

∑
i=a

(
f (xa)− f (xi)

)
i

+2
b−1

∑
i=a

〈 ẑi, xi− xa 〉
i

.

Using Lemma 3.3 and some delicate calculations we obtain the following upper bound on ∑
T
t=T/2 ‖wt‖2, re-

vealing the surprisingly intricate relationship between ZT (the martingale) and ∑
T
t=T/2 ‖wt‖2 (its SSCM process).

This is the main technical step that inspired our probabilistic tool (the generalized Freedman’s Inequality).

Lemma 3.4 (Main Technical Lemma). There exists positive values R1 = O
(

log2 T
T 2

)
, R2 = O

(
logT

T

)
, Ct =

Θ(log(T − t)), R3 = O
(

logT
T 2

)
such that

T

∑
t=T/2

‖wt‖2 ≤ R1 +R2
∥∥xT/2− x∗

∥∥2
+

T−1

∑
t=T/2

Ct

t
〈 ẑt , wt 〉︸ ︷︷ ︸

≈O(log(T)/T)ZT

+R3

T−1

∑
t=T/2

〈 ẑt , xt − x∗ 〉. (3.2)

This bound is mysterious in that the left-hand side is an upper bound on the sum of squared magnitudes of

ZT , whereas the third term on the right-hand side is essentially a scaled version of ZT itself. This is the “chicken

and egg phenomenon” alluded to in Section 1.4, and it poses another one of the main challenges of bounding

ZT . This bound inspires our main probabilistic tool, which we restate for convenience here.

21

Theorem 1.11 (Generalized Freedman). Let {di,Fi}n
i=1 be a martingale difference sequence. Suppose vi−1,

for i ∈ [n], are positive and Fi−1-measurable random variables such that E [exp(λdi) | Fi−1] ≤ exp
(

λ 2

2 vi−1

)
for all i ∈ [n], λ > 0. Let St = ∑

t
i=1 di and Vt = ∑

t
i=1 vi−1. Let αi ≥ 0 and set α = maxi∈[n] αi. Then

Pr

[
n⋃

t=1

{
St ≥ x and Vt ≤

t

∑
i=1

αidi +β

}]
≤ exp

(
− x

4α +8β/x

)
∀x,β > 0.

In order to apply Theorem 1.11, we need to refine Lemma 3.4 to replace the terms
∥∥xT/2− x∗

∥∥2 and

R3 ∑
T−1
t=T/2〈 ẑt , (xt−x∗)〉with sufficient high probability upper bounds. Rakhlin et al. [36] showed that ‖xt − x∗‖2≤

O(log log(T)/T) for all T
2 ≤ t ≤ T simultaneously, with high probability, which does not suffice for our pur-

poses. In contrast, our analysis only needs a high probability bound on
∥∥xT/2− x∗

∥∥2 and R3 ∑
T
t=T/2 ‖xt − x∗‖2;

this allows us to avoid a log logT factor here by foregoing a simultaneous analysis on all of the ‖xt − x∗‖2 terms.

Indeed, we have

Theorem 3.5. Both of the following hold:

• For all t ≥ 2, ‖xt − x∗‖2 ≤ O(log(1/δ)/t) with probability 1−δ , and

• Let σt ≥ 0 for t = 2, . . . ,T . Then, ∑
T
t=2 σt ‖xt − x∗‖2 = O

(
∑

T
t=2

σt
t log(1/δ)

)
w.p. 1−δ .

The proof of Theorem 3.5, in Subsection 3.1.2, uses our tool for bounding recursive stochastic processes

(Theorem 1.19). Therefore, we need to expose a recursive relationship between ‖xt+1− x∗‖2 and ‖xt − x∗‖2 that

satisfies the conditions of Theorem 1.19. Interestingly, Theorem 3.5 is also the main ingredient in the analysis

of the error of the suffix average (see Subsection 3.1.3). We now have enough to give our refined version of

Lemma 3.4, which is now in a format usable by Freedman’s Inequality.

Lemma 3.6. For every δ > 0 there exists positive values R = O
(

log2 T log(1/δ)
T 2

)
, Ct = Θ(log(T − t)) such that

∑
T
t=T/2 ‖wt‖2 ≤ R+∑

T−1
t=T/2

Ct
t 〈 ẑt , wt 〉, with probability at least 1−δ .

Proof. The lemma essentially follows from combining our bounds in Theorem 3.5 with an easy corollary

of Freedman’s Inequality (Corollary 4.4) which states that a high probability bound of M on the SSCM of a

martingale implies a high probability bound of
√

M on the martingale.

Let R1, R2,R3 and Ct be as in Lemma 3.4. Consider the resulting upper bound on ∑
T
t=T/2 ‖wt‖2. We al-

ready have a bound on the first term in Eq. (3.2), namely R1 = O(log2(T)/T 2). We know proceed to give

a high probability bound on the second term, and the fourth term. The first claim in Theorem 3.5 gives

R2
∥∥xT/2− x∗

∥∥2
= O

(
logT log(1/δ)

T 2

)
with probability at least 1−δ because R2 = O(log(T)/T).

By the second claim in Theorem 3.5, we have R2
3 ∑

T−1
t=T/2 ‖xt − x∗‖2 = O

(
log2 T

T 4 log(1/δ)
)

with probability

at least 1− δ because R3 = O
(

logT
T 2

)
. Hence, we have derived a high probability bound on the SSCM of

R3 ∑
T
t=T/2〈 ẑt , xt−x∗ 〉. Therefore, we turn this into a high probability bound on the martingale itself by applying

Corollary 4.4 and obtain R3 ∑
T−1
t=T/2〈 ẑt , xt − x∗ 〉= O

(
logT log(1/δ)

T 2

)
with probability at least 1−δ . �

Now that we have derived an upper bound on the sum of squared conditional magnitudes of ZT in the form

required by our Generalized Freedman Inequality (Theorem 1.11), we are finally ready to prove Lemma 3.2 (our

high probability upper bound on the noise, ZT).

22

Proof (of Lemma 3.2). We have demonstrated that ZT satisfies the “Chicken and Egg” phenomenon with high

probability. Translating this into a high probability upper bound on the martingale ZT itself is a corollary of

Theorem 1.11. Indeed, if (Mt)T/2≤t≤T is a martingale with increments di and if its SSCM process at time step

T is bounded by R log(1/δ)+∑
T
t=T/2 αtdt with maxt αt = O(

√
R). Then Corollary 4.5 bounds the martingale at

time step T by
√

R log(1/δ) with high probability.

Recall that our martingale at time T is ZT = ∑
T
t=T/2〈 ẑt , wt 〉. Let at = ẑt , bt = wt , and dt = 〈 at , bt 〉 for

t = T/2, . . . ,T and at = bt = dt = 0 for t < T/2. Then, ZT = ∑
T
t=T/2 dt as in the conclusion of Corollary 4.5. To

satisfy the hypothesis of Corollary 4.5, we will use Lemma 3.6 which shows

T

∑
t=1
‖bt‖2 =

T

∑
t=T/2

‖wt‖2 ≤ R log(1/δ)+
T

∑
t=T/2

Ct

t︸︷︷︸
:=αt

〈 ẑt , wt 〉︸ ︷︷ ︸
=dt

,

where R = O(log(T)2/T 2). Notice that maxt αt = maxt
Ct
t = O(log(T)/T) = O(

√
R). Hence, applying Corol-

lary 4.5 proves that ZT = O(
√

R log(1/δ)) = O((logT log(1/δ))/T) with probability at least 1−δ , as required.

�

3.1.2 High probability bounds on squared distances to x∗

In this section, we prove Theorem 3.5. We begin with the following claim which can be extracted from [36,

Equation (11)] by taking G = 4 (since ‖ĝt‖2 ≤ (‖ẑt‖+‖gt‖)2 ≤ (1+1)2 = 4), λ = 1, and ηt = 1/t.

Claim 3.7 ([36, Proof of Lemma 6]). Suppose f is 1-strongly-convex and 1-Lipschitz. Define Yt = t ‖xt+1− x∗‖2

and Ut = 〈 ẑt+1, xt+1− x∗ 〉/‖xt+1− x∗‖2. Then

Yt+1 ≤
(

t−1
t

)
Yt +2 ·Ut

√
Yt

t
+

4
t +1

.

This claim exposes a recursive relationship between ‖xt+1− x∗‖2 and ‖xt − x∗‖2 and inspires our probabilis-

tic tool for recursive stochastic processes (Theorem 1.19). We prove Theorem 3.5 using this tool:

Proof (of Theorem 3.5). Consider the stochastic process (Yt)
T−1
t=1 where Yt is as defined by Claim 3.7. Note

that Yt satisfies the conditions of Theorem 1.19 with Xt = Yt , ŵt = Ut , αt =
t−1

t = 1− 1/t, βt = 2/
√

t, and

γt = 4/(t +1). Observe that Ut is a Ft+1 measurable random variable which is mean zero conditioned on Ft .

Furthermore, note that |Ut | ≤ 1 with probability 1 because ‖ẑt+1‖ ≤ 1 with probability 1. Furthermore, it is easy

to check that max1≤t≤T

(
2γt

1−αt
, 2β 2

1−αt

)
= 8 with the above setup. Lastly, we observe that ‖x2− x∗‖2 ≤ 4 with

probability 1. Indeed by 1-strong-convexity and 1-Lipschitzness of f ,

‖xt − x∗‖ ≥ 〈gt , xt − x∗ 〉 ≥ 1
2
‖xt − x∗‖2 .

Thus, taking K = 8, it follows that E [exp(λX1)]≤ exp(λK), as required by Theorem 1.19. So, we may apply

Theorem 1.19 to obtain:

• For every t = 1, . . .T −1, Pr [Yt ≥ 8log(1/δ)]≤ eδ .

• Let σ ′t ≥ 0 for t = 1, . . . ,T −1. Then, Pr
[

∑
T−1
t=1 σ ′t Yt ≥ 8log(1/δ)∑

T−1
t=1 σ ′t

]
≤ eδ .

23

Recalling that Yt = t ‖xt+1− x∗‖2 and setting σ ′t = σt/t and adjusting δ as required proves Theorem 3.5. �

3.1.3 Upper bound on error of suffix averaging

To complete the proof of the final iterate upper bound (Theorem 1.9), it still remains to prove the suffix averaging

upper bound (Theorem 1.17). In this section, we prove this result as a corollary of the high probability bounds on
‖xt − x∗‖2 that we obtained in the previous subsection. See Section 3.4 for an alternative proof of Theorem 1.17

which does not involve the high probability bounds on ‖xt − x∗‖2.

The following proof of Theorem 1.17 is quite short and involves several ingredients. Some of the ingredients

are fairly standard: Lemma 3.14 is a standard analysis of Algorithm 1 and Corollary 4.4 is an easy corollary of

Freedman’s inequality which takes a high probability bound on the sum of squared magnitudes (SSCM) process

of a martingale and converts it into a high probability bound on the martingale itself. The main novel ingredient

is Theorem 3.5 which allows one to bound ∑
T
t=T/2 ‖xt − x∗‖2 by O(log(1/δ)) with probability at least 1− δ .

This summation is the SSCM process of a martingale which arises from an application of Lemma 3.14. Then,

Corollary 4.4 converts this high probability bound on the SSCM to a high probability bound on the martingale.

Proof (of Theorem 1.17). By Lemma 3.14 with w = x∗ we have

T

∑
t=T/2

[f (xt)− f (x∗)] ≤ 1
2

T

∑
t=T/2

ηt ‖ĝt‖2

︸ ︷︷ ︸
(a)

+
1

2ηT/2

∥∥xT/2− x∗
∥∥2

︸ ︷︷ ︸
(b)

+
T

∑
t=T/2

〈 ẑt , xt − x∗ 〉︸ ︷︷ ︸
(c)

. (3.3)

It suffices to bound the right hand side of (3.3) by O(log(1/δ)) with probability at least 1−δ . Indeed, bounding
‖ĝt‖2 by 4, (a) in (3.3) is bounded by O(1). Term (b) is bounded by O(log(1/δ)) by Theorem 3.5.

It remains to bound (c). Theorem 3.5 implies ∑
T
t=T/2 ‖xt − x∗‖2 = O(log(1/δ)) with probability at least

1−δ . Therefore, Corollary 4.4 shows that (c) is at most O(log(1/δ)) with probability at least 1−δ . �

3.2 Upper bound on error of final iterate, Lipschitz case: proof sketch
In this section we provide a proof sketch of the upper bound of the final iterate of SGD, in the case where f is 1-

Lipschitz but not necessarily strongly-convex (Theorem 1.10). The proof of Theorem 1.10 closely resembles the

proof of Theorem 1.9 and we will highlight the main important differences. Perhaps the most notable difference

is that the analysis in the Lipschitz case does not require a high probability bound on ‖xt − x∗‖2.

Recall that the step size used by Algorithm 1 in this case is ηt = 1/
√

t. We will write ĝt = gt − ẑt , where ĝt

is the vector returned by the oracle at the point xt , gt ∈ ∂ f (xt), and ẑt is the noise. Let Ft = σ(ẑ1, . . . , ẑt) be the

σ -algebra generated by the first t steps of SGD. Finally, recall that ‖ẑt‖ ≤ 1 and E [ẑt | Ft−1] = 0.

As before, we begin with a lemma which can be obtained by modifying the proof of Lemma 3.1 to replace

applications of strong convexity with the subgradient inequality.

Lemma 3.8. Let f be 1-Lipschitz. Suppose that we run SGD (Algorithm 1) with step sizes ηt =
1√
t . Then,

f (xT) ≤
1

T/2+1

T

∑
t=T/2

f (xt)︸ ︷︷ ︸
suffix average

+
T/2

∑
k=1

1
k(k+1)

T

∑
t=T−k

〈 ẑt , xt − xT−k 〉︸ ︷︷ ︸
ZT , the noise term

+ O
(

log(T)√
T

)
.

24

Lemma 3.8 asserts that the error of the last iterate is bounded by the sum of the error of the average of the

iterates and some noise terms (up to the additive O(logT/
√

T) term). A standard analysis (similar to the proof

of Lemma 3.14) reveals ∑
T
t=T/2 [f (xt)− f (x∗)] ≤ O(

√
T)+∑

T
t=T/2〈 ẑt , xt − x∗ 〉. Applying Azuma’s inequality

on the summation (using the diameter bound to obtain 〈 ẑt , xt − x∗ 〉2 ≤ 1) shows

Lemma 3.9. For every δ ∈ (0,1),

1
T/2+1

[
T

∑
t=T/2

f (xt)− f (x∗)

]
= O

(√
log(1/δ)/T

)
,

with probability at least 1−δ .

As a consequence of Lemma 3.9, it is enough to prove that the error due to the noise terms are small in order

to complete the proof of Theorem 1.10. By changing the order of summation, we can write ZT = ∑
T
t=T/2〈 ẑt , wt 〉

where

wt =
t−1

∑
j=1

α j(xt − x j) and α j =
1

(T − j)(T − j+1)
.

Just as in Section 3.1, the main technical difficulty is to show that ZT is small with high probability. Formally,

we prove the following lemma, whose proof is outlined in Subsection 3.2.1.

Lemma 3.10. For every δ ∈ (0,1), ZT ≤ O
(
log(T) log(1/δ)/

√
T
)

with probability at least 1−δ .

Given Lemma 3.9 and Lemma 3.10, the proof of Theorem 1.10 is straightforward. The next sub-section provides

a proof sketch of Lemma 3.10.

3.2.1 Bounding the noise

The goal of this section is to prove Lemma 3.10. Just as in Section 3.1, the main technical difficulty is to

understand the noise term, denoted ZT . Observe that (Zt)T/2≤t≤T a martingale, and ∑
T
t=T/2 ‖wt‖2 is the SSCM

of ZT . The SSCM of ZT will be shown to exhibit the “chicken and egg” relationship which we have already

seen explicitly exhibited by the SSCM of the noise terms in the strongly convex case. That is, we will see that

the ∑
T
t=T/2 ‖wt‖2 is bounded by a linear transformation of ZT . We will again use our Generalized Freedman to

disentangle the sum of squared magnitudes from the martingale.

The distance
∥∥xt − x j

∥∥ between SGD iterates is again a crucial quantity to understand in order to bound

∑
T
t=T/2 ‖wt‖2 (see Subsection 3.1.1 to see why). Therefore, we develop a distance estimate analogous to

Lemma 3.3

Lemma 3.11. Suppose f is 1-Lipschitz. Suppose we run Algorithm 1 for T iterations with step sizes ηt = 1/
√

t.

Let a < b. Then,

‖xa− xb‖2 ≤
b−1

∑
i=a

‖ĝi‖2

i
+2

b−1

∑
i=a

(
f (xa)− f (xi)

)
√

i
+2

b−1

∑
i=a

〈 ẑi, xi− xa 〉√
i

.

We then use Lemma 3.11 to prove Lemma 3.12, our main upper bound on ∑
T
t=T/2 ‖wt‖2. This follows from

some delicate calculations similar to those in Subsection 3.3.4, replacing the strongly-convex distance estimate

(Lemma 3.3) with the Lipschitz distance estimate (Lemma 3.11), along with some other minor modifications.

25

This upper bound reveals the surprisingly intricate relationship between ZT (the martingale) and ∑
T
t=T/2 ‖wt‖2

(its SSCM).

Lemma 3.12 (Main Technical Lemma (Lipschitz Case)). There exists positive values R1 = O
(

log2 T
T

)
, R2 =

O
(

logT
T 1.5

)
, and Ct = O(logT), such that

T

∑
t=T/2

‖wt‖2 ≤ R1 +R2

T

∑
t=T/2

〈 ẑt , xt − x∗ 〉+
T

∑
t=T/2

〈 ẑt ,
Ct√

t
wt 〉︸ ︷︷ ︸

≈O(logT/
√

T)ZT

.

Just as in Lemma 3.4, the left-hand side is an upper bound on the sum of squared magnitudes of ZT , whereas

the right-hand side essentially contains a scaled version of ZT itself. This is another instance of the “chicken

and egg phenomenon” alluded to in Section 1.4, and it is the main challenge of bounding ZT . For convenience,

we restate our main probabilistic tool which allows us to deal with the chicken and egg phenomenon.

Theorem 1.11 (Generalized Freedman). Let {di,Fi}n
i=1 be a martingale difference sequence. Suppose vi−1,

for i ∈ [n], are positive and Fi−1-measurable random variables such that E [exp(λdi) | Fi−1] ≤ exp
(

λ 2

2 vi−1

)
for all i ∈ [n], λ > 0. Let St = ∑

t
i=1 di and Vt = ∑

t
i=1 vi−1. Let αi ≥ 0 and set α = maxi∈[n] αi. Then

Pr

[
n⋃

t=1

{
St ≥ x and Vt ≤

t

∑
i=1

αidi +β

}]
≤ exp

(
− x

4α +8β/x

)
∀x,β > 0.

In order to apply Theorem 1.11, we need to refine Lemma 3.12 to replace R2 ∑
T
t=T/2〈 ẑt , xt−x∗ 〉 with a suffi-

cient high probability upper bound. This is similar to the refinement of Lemma 3.4 from Subsection 3.1.1. How-

ever, unlike the refinement in Subsection 3.1.1 (which required a high probability bound on ∑
T
t=T/2 At ‖xt − x∗‖2

without any diameter bound), the refinement here is quite easy. Using the diameter bound, the almost sure

bound of ‖ẑt‖ ≤ 1, and Azuma’s inequality, we can bound ∑
T
t=T/2〈 ẑt , xt−x∗ 〉 by

√
T log(1/δ) with probability

at least 1−δ . This yields the following lemma.

Lemma 3.13. For every δ ∈ (0,1), there exists positive values R = O
(

log2 T
√

log(1/δ)

T

)
, Ct = O(logT), such

that ∑
T
t=T/2 ‖wt‖2 ≤ R+∑

T−1
t=T/2〈 ẑt ,

Ct√
t wt 〉, with probability at least 1−δ .

Now that we have derived an upper bound on the sum of squared magnitutdes of ZT in the form required

by Generalized Freedman Inequality (Theorem 1.11), we are now finally ready to prove Lemma 3.10 (the high

probability upper bound on the noise, ZT).

Proof (of Lemma 3.10). We have demonstrated that ZT satisfies the “Chicken and Egg” phenomenon with high

probability. Translating this into a high probability upper bound on the martingale ZT itself is a corollary of

Theorem 1.11.

Indeed, consider a filtration {Ft}T
t=T/2. Let dt = 〈 at , bt 〉 define a martingale difference sequence where

‖at‖ ≤ 1 and E [at | Ft−1] = 0. Suppose there are positive values, R, αt , such that maxT
t=T/2{αt} = O

(√
R
)

and ∑
T
t=T/2 ‖bt‖2 ≤ ∑

T
t=T/2 αtdt +R

√
log(1/δ) with probability at least 1−δ . Then, Corollary 4.5 bounds the

martingale at time step T by
√

R log(1/δ) with high probability.

26

Observe that Lemma 3.13 allows us to apply Corollary 4.5 with at = ẑt , bt = wt , αt = (Ct/
√

t) for t =

T/2, . . . ,T −1, αT = 0, maxT
t=T/2{αt}= O

(
logT/

√
T
)
, and R = O

(
log2 T/T

)
to prove Lemma 3.10.

�

3.3 Omitted proofs from Section 3.1

3.3.1 Standard analysis of SGD

The following lemma is standard.

Lemma 3.14. Let f be an 1-strongly convex and 1-Lipschitz function. Consider running Algorithm 1 for T

iterations. Then, for every w ∈X and every k ∈ [T],

T

∑
t=k

[
f (xt)− f (w)

]
≤ 1

2

T

∑
t=k

ηt‖ĝt‖2 +
1

2ηk
‖xk−w‖2 +

T

∑
t=k
〈 ẑt , xt −w 〉.

Proof.

f (xt)− f (w) ≤ 〈gt , xt −w 〉− 1
2
‖xt −w‖2 (by strong-convexity)

= 〈 ĝt , xt −w 〉− 1
2
‖xt −w‖2 + 〈 ẑt , xt −w 〉 (ĝt = gt − ẑt)

=
1
ηt
〈 xt − yt+1, xt −w 〉− 1

2
‖xt −w‖2 + 〈 ẑt , xt −w 〉 (yt+1 = xt −ηt ĝt)

=
1

2ηt

(
‖xt − yt+1‖2 +‖xt −w‖2−‖yt+1−w‖2

)
− 1

2
‖xt −w‖2 + 〈 ẑt , xt −w 〉

≤ 1
2ηt

(
‖ηt ĝt‖2 +‖xt −w‖2−‖xt+1−w‖2

)
− 1

2
‖xt −w‖2 + 〈 ẑt , xt −w 〉 (by Claim A.8).

Now, summing t from k to T ,

T

∑
t=k

[
f (xt)− f (w)

]
≤ 1

2

T

∑
t=k

ηt ‖ĝt‖2 +
1
2

T

∑
t=k+1

(
1
ηt
− 1

ηt−1
−1
)

︸ ︷︷ ︸
=0

‖xt −w‖2 +

(
1

2ηk
− 1

2

)
‖xk−w‖2 +

T

∑
t=k
〈 ẑt , xt −w 〉

≤ 1
2

T

∑
t=k

ηt ‖ĝt‖2 +
1

2ηk
‖xk−w‖2 +

T

∑
t=k
〈 ẑt , xt −w 〉 (ηt = 1/t),

as desired. �

27

3.3.2 Proof of Lemma 3.1

Lemma 3.1. Let f be 1-strongly convex and 1-Lipschitz. Suppose that we run SGD (Algorithm 1) with step

sizes ηt = 1/t. Assume that T is even. Then

f (xT) ≤
1

T/2+1

T

∑
t=T/2

f (xt)︸ ︷︷ ︸
suffix average

+
T/2

∑
k=1

1
k(k+1)

T

∑
t=T−k

〈 ẑt , xt − xT−k 〉︸ ︷︷ ︸
ZT , the noise term

+ O
(

logT
T

)
.

Proof (of Lemma 3.1). Let k ∈ [T −1]. Apply Lemma 3.14, replacing k with T − k and w = xT−k to obtain:

T

∑
t=T−k

[
f (xt)− f (xT−k)

]
≤ 1

2

T

∑
t=T−k

ηt ‖ĝt‖2 +
T

∑
t=T−k

〈 ẑt , xt − xT−k 〉.

Now, divide this by k+1 and define Sk =
1

k+1 ∑
T
t=T−k f (xt) to obtain

Sk− f (xT−k) ≤
1

2(k+1)

T

∑
t=T−k

ηt ‖ĝt‖2 +
1

k+1

T

∑
t=T−k

〈 ẑt , xt − xT−k 〉

Observe that kSk−1 = (k+1)Sk− f (xT−k). Combining this with the previous inequality yields

kSk−1 = kSk +
(
Sk− f (xT−k)

)
≤ kSk +

1
2(k+1)

T

∑
t=T−k

ηt ‖ĝt‖2 +
1

k+1

T

∑
t=T−k

〈 ẑt , xt − xT−k 〉.

Dividing by k, we obtain:

Sk−1 ≤ Sk +
1

2k(k+1)

T

∑
t=T−k

ηt ‖ĝt‖2 +
1

k(k+1)

T

∑
t=T−k

〈 ẑt , xt − xT−k 〉.

Thus, by induction:

f (xT) = S0

≤ ST/2 +
T/2

∑
k=1

1
2k(k+1)

T

∑
t=T−k

ηt ‖ĝt‖2 +
T/2

∑
k=1

1
k(k+1)

T

∑
t=T−k

〈 ẑt , xt − xT−k 〉 (3.4)

=
1

T/2+1

T

∑
t=T/2

f (xt)+
T/2

∑
k=1

1
2k(k+1)

T

∑
t=T−k

ηt ‖ĝt‖2 +
T/2

∑
k=1

1
k(k+1)

T

∑
t=T−k

〈 ẑt , xt − xT−k 〉.

Since we assume that f is 1 Lipschitz, we have ‖gt‖ ≤ 1. Recall that we assume that the noise is bounded,

28

i.e. ‖ẑt‖ ≤ 1. Thus ‖ĝt‖2 ≤ 4. Recall that ηt = 1/t. So we can bound the middle term as

T/2

∑
k=1

1
2k(k+1)

T

∑
t=T−k

ηt ‖ĝt‖2 ≤ 2
T/2

∑
k=1

1
k(k+1)

T

∑
t=T−k

1
t

≤ 2
T/2

∑
k=1

1
k(k+1)

· k+1
T − k

= 2
T/2

∑
k=1

1
k(T − k)

≤ 4
T

T/2

∑
k=1

1
k

= O
(

logT
T

)
.

This completes the proof. �

3.3.3 Proof of Lemma 3.3

Lemma 3.3. Suppose f is 1-Lipschitz and 1-strongly convex. Suppose we run Algorithm 1 for T iterations

with step sizes ηt = 1/t. Let a < b. Then,

‖xa− xb‖2 ≤
b−1

∑
i=a

‖ĝi‖2

i2
+2

b−1

∑
i=a

(
f (xa)− f (xi)

)
i

+2
b−1

∑
i=a

〈 ẑi, xi− xa 〉
i

.

Proof (of Lemma 3.3).

‖xa− xb‖2 = ‖xa−ΠX (yb)‖2
2

≤ ‖xa− yb‖2
2 (Claim A.8)

= ‖xa− xb−1 + xb−1− yb‖2
2

= ‖xa− xb−1‖2
2 +‖xb−1− yb‖2

2 +2〈ηb−1ĝb−1, xa− xb−1 〉

= ‖xa− xb−1‖2
2 +η

2
b−1 ‖ĝb−1‖2

2 +2〈ηb−1ĝb−1, xa− xb−1 〉

= ‖xa− xb−1‖2
2 +η

2
b−1 ‖ĝb−1‖2

2 +2〈ηb−1gb−1, xa− xb−1 〉+2〈ηb−1ẑb−1, xb−1− xa 〉

Repeating this argument iteratively on ‖xa− xb−1‖, ‖xa− xb−2‖, . . . , ‖xa− xa+1‖, we obtain:

‖xa− xb‖2 ≤
b−1

∑
i=a

‖ĝi‖2
2

i2
+2

b−1

∑
i=a

〈gi, xa− xi 〉
i

+2
b−1

∑
i=a

〈 ẑi, xi− xa 〉
i

.

Applying the subgradient inequality 〈 gi, xa− xi 〉 ≤ f (xa)− f (xi) to each term of the second summation gives

the desired result. �

29

3.3.4 Proof of Lemma 3.4

Proof (of Lemma 3.4). Recall from Eq. (3.1) that wt = ∑
t−1
j=T/2 α j(xt − x j).

Definition 3.15. Define BT := ∑
T
t=T/2

1
T−t+1 ∑

t−1
j=T/2 α j

∥∥xt − x j
∥∥2.

Claim 3.16. ∑
T
t=T/2 ‖wt‖2 ≤ BT .

Proof. Let At = ∑
t−1
j=T/2 α j. Then

‖wt‖2 = A2
t

∥∥∥∥∥ T−1

∑
j=T/2

α j

At
(xt − x j)

∥∥∥∥∥
2

≤ A2
t

T−1

∑
j=T/2

α j

At

∥∥xt − x j
∥∥2

≤ 1
T − t +1

t−1

∑
j=T/2

α j
∥∥xt − x j

∥∥2
,

where the first inequality is due to the convexity of ‖·‖2 and the second inequality is Claim A.13. �

Using the definition of BT and Lemma 3.3, let us write BT ≤ Λ1 +Λ2 +Λ3 where

Λ1 := 4
T

∑
t=T/2

1
T − t +1

t−1

∑
j=T/2

α j

t−1

∑
i= j

1
i2

(since ‖ĝt‖2 ≤ 4 for all t),

Λ2 := 2
T

∑
t=T/2

1
T − t +1

t−1

∑
j=T/2

α j

t−1

∑
i= j

(
Fj−Fi

)
i

(where Fa := f (xa)− f (x∗)),

Λ3 := 2
T

∑
t=T/2

1
T − t +1

t−1

∑
j=T/2

α j

t−1

∑
i= j

〈 ẑi, xi− x j 〉
i

.

Let us bound each of the terms separately. Recall from Eq. (3.1) that α j =
1

(T− j)(T− j+1) for j ∈ [T −1].

Claim 3.17. Λ1 ≤ O
(

log2(T)
T 2

)
.

Proof. This follows from some straightforward calculations. Indeed,

Λ1 = 4
T

∑
t=T/2

1
T − t +1

t−1

∑
j=T/2

α j

t−1

∑
i= j

1
i2

≤ 4
T

∑
t=T/2

1
T − t +1

t−1

∑
j=T/2

1
(T − j)(T − j+1)

(T − j)
(T/2)2

≤ 4
(T/2)2

T

∑
t=T/2

1
T − t +1

t−1

∑
j=T/2

1
T − j+1

≤ O
(

log2(T)
T 2

)
.

�

30

Claim 3.18.

Λ2 ≤ O
(

log(T)
T 2

)
+O

(
log(T)

T

)∥∥xT/2− x∗
∥∥2

2 +O
(

log(T)
T 2

) T−1

∑
t=T/2

〈 ẑt , xt − x∗ 〉.

We will prove Claim 3.18 in the next section.

Claim 3.19.

Λ3 =
T−1

∑
i=T/2

〈
ẑi,

Ci

i
wi

〉
,

where Ci := ∑
T
`=i+1

2
T−`+1 = Θ

(
log(T − i)

)
.

Proof. Rearranging the order of summation in Λ3 we get:

Λ3 =
T

∑
t=T/2

2
T − t +1

t−1

∑
j=T/2

α j

t−1

∑
i= j

〈 ẑi, xi− x j 〉
i

=
T

∑
t=T/2

2
T − t +1

t−1

∑
i=T/2

〈 ẑi, ∑
i−1
j=T/2 α j(xi− x j) 〉

i

=
T

∑
t=T/2

2
T − t +1

t−1

∑
i=T/2

〈 ẑi, wi 〉
i

=
T−1

∑
i=T/2

〈
ẑi,

∑
T
t=i+1

2
T−t+1

i
wi

〉
=

T−1

∑
i=T/2

〈
ẑi,

Ci

i
wi

〉
,

as desired. �

The previous three claims and the fact that BT is an upper bound on ∑
T
t=T/2 ‖wt‖2 (Claim 3.16) complete the

proof of Lemma 3.4. �

3.3.5 Proof of Claim 3.18

Let us rewrite

Λ2 =
T−1

∑
a=T/2

γaFa

and determine the coefficients γa.

Claim 3.20. For each a ∈ {T/2, . . . ,T −1}, γa = O
(

log(T)
T 2

)
.

Proof. In the definition of Λ2, the indices providing a positive coefficient for Fa must satisfy j = a, a ≤ i, and

31

a≤ t−1. Recall that we assume T ≥ 4, so a≥ 2. Hence, the positive contribution to γa is:

T

∑
t=1+a

2
T − t +1

αa

t−1

∑
i=a

1
i

≤
T

∑
t=1+a

(
2

T − t +1
αa

)(
log
(
T/(a−1)

))
(by Claim A.15)

≤
T

∑
t=1+a

(
2

T − t +1
αa

)(
T −a+1

a−1

)
(by Claim A.14)

=
T

∑
t=1+a

(
2

T − t +1

)(
1

(T −a)(T −a+1)

)(
T −a+1

a−1

)
=

1
T −a

T

∑
t=1+a

2
(T − t +1)(a−1)

.

The terms contributing to the negative portion of γa satisfy, i = a, j≤ a, and a≤ t−1. The negative contribution

can be written as

−
T

∑
t=1+a

2
T − t +1

a

∑
j=T/2

α j ·
1
a

= −
T

∑
t=1+a

(
2

T − t +1

)(
1
a

)(
1

T −a
− 1

T/2+1

)
(by Claim A.13)

= −
T

∑
t=1+a

(
2

T − t +1

)(
1
a

)(
2a−T +2

2(T/2+1)(T −a)

)
= − 1

(T/2+1)(T −a)

T

∑
t=1+a

(
2

T − t +1

)(
2a−T +2

2a

)
= − 2

(T +2)(T −a)

T

∑
t=1+a

(
2

T − t +1

)(
1− T −2

2a

)
.

32

Now, combining the positive and negative contribution we see:

γa ≤
1

T −a

T

∑
t=1+a

2
T − t +1

(
1

a−1
− 2

T +2

(
1− T −2

2a

))
=

1
T −a

T

∑
t=1+a

2
T − t +1

(
T +2−2

(
a−1

)(
1− T−2

2a

)
(a−1)(T +2)

)

=
1

T −a

T

∑
t=1+a

2
T − t +1

(
T +2−2(a−1)+ 2(T−2)(a−1)

2a
(a−1)(T +2)

)
≤ 1

T −a

T

∑
t=1+a

2
T − t +1

(
2
(
T −a

)
+2

(T +2)(a−1)

)
≤ 1

T −a

T

∑
t=1+a

2
T − t +1

(
2
(
T −a

)
+2
(
T −a

)
(T +2)(a−1)

)
(a≤ T −1)

=
1

(T +2)(a−1)

T

∑
t=1+a

8
T − t +1

≤ 1
(T +2)(T/2−1)

T

∑
t=1+a

8
T − t +1

(a≥ T/2)

= O
(

log(T)
T 2

)
,

as desired. �

Proof (of Claim 3.18).

Λ2 =
T−1

∑
a=T/2

γaFa

≤ O
(

log(T)
T 2

) T−1

∑
a=T/2

(
f (xa)− f (x∗)

)
(by Claim 3.20 and the definition of Fa)

Then by Lemma 3.14 with k = T/2 and w = x∗,

≤ O
(

log(T)
T 2

)(
1
2

T−1

∑
t=T/2

ηt ‖ĝt‖2 +
1

2ηT/2

∥∥xT/2− x∗
∥∥2

+
T−1

∑
t=T/2

〈 ẑt , xt − x∗ 〉
)

(3.5)

≤ O
(

log(T)
T 2

) T−1

∑
t=T/2

1
t
+O

(
log(T)

T

)∥∥xT/2− x∗
∥∥2

+O
(

log(T)
T 2

) T−1

∑
t=T/2

〈 ẑt , xt − x∗ 〉 (‖ĝt‖ ≤ 2)

≤ O
(

log(T)
T 2

)
+O

(
log(T)

T

)∥∥xT/2− x∗
∥∥2

+O
(

log(T)
T 2

) T−1

∑
t=T/2

〈 ẑt , xt − x∗ 〉,

as desired. �

3.3.6 Proof of Claim 3.7

Proof (of Claim 3.7). We begin by stating two consequences of strong convexity:

33

1. 〈gt ,xt − x∗〉 ≥ f (xt)− f (x∗)+ 1
2 ‖xt − x∗‖2,

2. f (xt)− f (x∗)≥ 1
2 ‖xt − x∗‖2 (since 0 ∈ ∂ f (x∗)).

The analysis proceeds as follows:

‖xt+1− x∗‖2 = ‖ΠX (xt −ηt ĝt)− x∗‖2

≤ ‖xt −ηt ĝt − x∗‖2 (Claim A.8)

= ‖xt − x∗‖2−2ηt〈ĝt ,xt − x∗〉+η
2
t ‖ĝt‖2

= ‖xt − x∗‖2−2ηt〈gt ,xt − x∗〉+2ηt〈ẑt ,xt − x∗〉+η
2
t ‖ĝt‖2

≤ ‖xt − x∗‖2−2ηt

(
f (xt)− f (x∗)

)
− 1

t
‖xt − x∗‖2 +2ηt〈ẑt ,xt − x∗〉+η

2
t ‖ĝt‖2

≤
(

1− 2
t

)
‖xt − x∗‖2 +2ηt〈ẑt ,xt − x∗〉+η

2
t ‖ĝt‖2

=

(
t−2

t

)
Yt−1

t−1
+

2
t
Ut−1

√
Yt−1

t−1
+
‖ĝt‖2

t2 .

Recall that ‖ĝt‖2 ≤ 4 because ẑt ≤ 1 and f is 1-Lipschitz. Multiplying through by t and bounding ‖ĝt‖2 by 4

yields the desired result. �

3.4 Alternative proof of Theorem 1.17
In this section we demonstrate how to prove Theorem 1.17 using the Generalized Freedman inequality. In

particular, we will not use Theorem 3.5 (the high probability bound on ‖xt − x∗‖2), which was the main tool used

to bound the error of suffix-averaging in Subsection 3.1.3. Here, we state a specialized form of the Generalized

Freedman’s Inequality which is a direct corollary from Lemma 4.3. Notice that Theorem 3.21 does not include

VT in the event which it bounds whereas Theorem 1.11 includes VT . This is because Theorem 3.21 assumes

that VT satisfies the “chicken and egg” phenomenon almost surely whereas Theorem 1.11 does not make this

assumption.

Theorem 3.21. Let {dt ,Ft}T
t=1 be a martingale difference sequence. Suppose that, for t ∈ [T], vt−1 are non-

negative Ft−1-measurable random variables satisfying E [exp(λdt) | Ft−1]≤ exp
(

λ 2

2 vt−1

)
for all λ > 0. Let

ST = ∑
T
t=1 dt and VT = ∑

T
t=1 vt−1. Suppose there exists α1, . . . ,αT ,β ∈ R≥0 such that VT ≤ ∑

T
t=1 αtdt +β . Let

α ≥maxt∈[T] αt . Then

Pr [ST ≥ x] ≤ exp
(
− x2

4α · x+8β

)
.

The main idea of this proof is to upper bound the error of the suffix average by a martingale whose sum

of squared conditional magnitudes (SSCM) is bounded above by a linear combination of its own increments,

where the coefficients in the linear combination are all O(1). Informally, we will show

T

∑
t=T/2

[f (xt)− f (x∗)] ≤
T

∑
t=1

dt +O(1) and
T

∑
t=1

d2
t ≤

T

∑
t=1

O(1)dt +O(1).

34

Then, an application of Theorem 3.21 using α = O(1), β = O(1) and x = O(log(1/δ)) proves Theorem 1.17.

More formally, we prove the following lemmata.

Lemma 3.22. Let f be a 1 strongly-convex and 1-Lipschitz function over X . Consider running SGD (Algo-

rithm 1) until time T with step size ηt = 1/t. Let x∗ = argminx∈X f (x). Then,

T

∑
t=T/2

(f (xt)− f (x∗)) ≤ ζ +
T/2−1

∑
t=2

ξt〈 ẑt , xt − x∗ 〉+
T

∑
t=T/2

〈 ẑt , xt − x∗ 〉, (3.6)

where ζ = O(1) and ξt = Θ
(t

T

)
.

Lemma 3.23. Let ξt be as in Lemma 3.22. Then,

T/2−1

∑
t=2

ξ
2
t ‖xt − x∗‖2 +

T

∑
t=T/2

‖xt − x∗‖2 ≤ σ +
T/2−1

∑
t=2

σtξt〈 ẑt , xt − x∗ 〉+
T

∑
t=T/2

σt〈 ẑt , xt − x∗ 〉, (3.7)

where σ and σt are O(1) for all t.

Lemma 3.22 and Lemma 3.23 suffice for us to prove Theorem 1.17 by applying Theorem 3.21.

Proof (of Theorem 1.17). It suffices to bound ∑
T
t=T/2 (f (xt)− f (x∗)) by O(log(1/δ)) with probability at least

1−δ . Let dt = ξt〈 ẑt , xt−x∗ 〉 for t = 2, . . . ,T/2−1, dt = 〈 ẑt , xt−x∗ 〉 for t = T/2, . . . ,T, and d1 = 0. Applying

Lemma 3.22, it suffices to bound ∑
T
t=1 dt by O(log(1/δ)) with probability at least 1−δ . We check the conditions

needed to apply Theorem 3.21.

Let vt−1 = 0 for t = 1, vt−1 = ξ 2
t ‖xt − x∗‖2 for t = 2, . . . ,T/2−1 and vt−1 = ‖xt − x∗‖2 for t = T/2, . . . ,T.

Using Cauchy-Schwarz and the almost sure bound on ‖ẑt‖, we see |〈 ẑt , xt − x∗ 〉| ≤ ‖xt − x∗‖ . Because ‖xt − x∗‖
is Ft−1-measurable, this implies (via Hoeffdings Lemma – Lemma A.5) that for every t and λ > 0 we have

E [exp(λdt) | Ft−1]≤ exp
(

λ 2

2 vt−1

)
.

Next, applying Lemma 3.23, we have ∑t=1 vt−1 ≤ σ +∑
T
t=1 σtdt with σt ,σ = O(1). Setting β = σ and

αt = σt , we have α = maxt∈[T] αt = O(1), we may now apply Theorem 3.21 using β = O(1), α = O(1),

x = O(log(1/δ)) to obtain the desired result.

�

A tool which we will use repeatedly to prove the two lemmata above is the following result from [36].

Lemma 3.24 ([36, Lemma 6]). Let f be λ strongly-convex. Consider running SGD (Algorithm 1) until time

step T with step size ηt = 1/(λ t). Then, for all t ≥ 3

‖xt − x∗‖2 ≤ 2
λ (t−2)(t−1)

t−1

∑
i=2

(i−1)〈 ẑi, xi− x∗ 〉+ ‖ĝt−1‖2

λ 2(t−1)
.

35

3.4.1 Proof of Lemma 3.22

Proof (of Lemma 3.22). By Lemma 3.14 with w = x∗ we have

T

∑
t=T/2

(f (xt)− f (x∗)) ≤ 1
2

T

∑
t=T/2

ηt ‖ĝt‖2

︸ ︷︷ ︸
(a)

+
1

2ηT/2

∥∥xT/2− x∗
∥∥2

︸ ︷︷ ︸
(b)

+
T

∑
t=T/2

〈 ẑt , xt − x∗ 〉.

Observe that (a) is bounded by O(1) by bounding ‖ĝt‖2 by 4 using 1-Lipschitzness, that ‖ẑt‖ ≤ 1 almost surely,

and that ηt = 1/t.

Now, we bound (b). Applying Lemma 3.24 and recalling ηT/2 = T/2, we obtain

∥∥xT/2− x∗
∥∥2 ≤ T

(T/2−2)(T/2−1)

T/2−1

∑
t=2

(t−1)〈 ẑt , xt − x∗ 〉+
∥∥ĝT/2−1

∥∥2

T/2−1
.

Now, setting ζ = (a)+ ‖ĝt−1‖2

(T/2−1) and ξt =
T (t−1)

(T/2−2)(T/2−1) completes the proof of Lemma 3.22. �

3.4.2 Proof of Lemma 3.23

Proof (of Lemma 3.23). Applying Lemma 3.24 and rearranging the sum on the first line, we have

T/2−1

∑
t=2

ξ
2
t ‖xt − x∗‖2 ≤ ξ

2
2 ‖x2− x∗‖2 +

T/2−1

∑
t=3

ξ
2
t

(
2

(t−2)(t−1)

t−1

∑
i=2

(i−1)〈 ẑi, xi− x∗ 〉+ ‖ĝt−1‖2

t−1

)

= ξ
2
2 ‖x2− x∗‖2 +

T/2−1

∑
t=3

ξ 2
t ‖ĝt−1‖2

(t−1)︸ ︷︷ ︸
:=s1

+
T/2−2

∑
i=2

(i−1)

(
T/2−1

∑
t=i+1

ξ 2
t

(t−2)(t−1)

)
· 〈 ẑi, xi− x∗ 〉

One may use 1-Lipschitz and 1 strong convexity to bound ‖x2− x∗‖2 by O(1). Using Lipschitzness and the

assumption that ‖ẑt‖ ≤ 1 almost surely, and recalling that ξt = Θ(t/T), we can bound s1 by O(1).

Next, applying Lemma 3.24 and rearranging and splitting the sum on the first line below we have again we

have

T

∑
t=T/2

‖xt − x∗‖2 ≤
T

∑
t=T/2

2
(t−2)(t−1)

t−1

∑
i=2

(i−1)〈 ẑi, xi− x∗ 〉+
T

∑
t=T/2

‖ĝt−1‖2

t−1

=
T

∑
t=T/2

‖ĝt−1‖2

t−1︸ ︷︷ ︸
:=s2

+
T/2−1

∑
i=2

(i−1)

(
T

∑
t=T/2

2
(t−2)(t−1)

)
· 〈 ẑi, xi− x∗ 〉

+
T

∑
t=T/2

(i−1)

(
T

∑
t=i+1

2
(t−1)(t−2)

)
· 〈 ẑi, xi− x∗ 〉.

36

Notice that s2 = O(1) by bounding ‖ĝt−1‖2 using Lipschitzness of f and the assumption that ‖ẑt‖ ≤ 1 almost

surely. Therefore we have,

T/2−1

∑
t=2

ξ
2
t ‖xt − x∗‖2 +

T

∑
t=t/2
‖xt − x∗‖2

≤ s1 + s2 +
T/2−2

∑
i=2

(i−1)

(
T/2−1

∑
t=i+1

ξ 2
t

(t−2)(t−1)

)
· 〈 ẑi, xi− x∗ 〉

+
T/2−1

∑
i=2

(i−1)

(
T

∑
t=T/2

2
(t−2)(t−1)

)
· 〈 ẑi, xi− x∗ 〉

+
T

∑
t=T/2

(i−1)

(
T

∑
t=i+1

2
(t−1)(t−2)

)
· 〈 ẑi, xi− x∗ 〉.

We rewrite the right hand side of the above inequality as

σ +
T/2−1

∑
i=2

σ̃i〈 ẑi, xi− x∗ 〉+
T

∑
i=T/2

σi〈 ẑi, xi− x∗ 〉

where σ = s1 + s2, σi = (i−1)
(

∑
T
t=i+1

2
(t−1)(t−2)

)
for i = T/2, . . . ,T and

σ̃i :=

(i−1)
(

∑
T/2−1
t=i+1

ξ 2
t

(t−2)(t−1) +∑
T
t=T/2

2
(t−2)(t−1)

)
for i = 2, . . . ,T/2−2,

(i−1)
(

∑
T
t=T/2

2
(t−2)(t−1)

)
for i = T/2−1.

Note that σi = O(1) for all i = T/2, . . . ,T and σ = O(1) as well (recalling that s1 and s2 are O(1)). Next,

using ξi = Θ(i/T) one can verify that σ̃i = O(i/T). Again, because ξi = Θ(i/T), this means that we can write

σ̃i = σiξi for some σi = O(1), completing the proof of Lemma 3.23.

�

3.5 High probability bound on a non-uniform averaging scheme
In this section, we prove that a non-uniform averaging scheme attains the optimal O(1/T) rate with high proba-

bility. Recall that we have already seen that the suffix average attains the optimal O(1/T) with high probability

in Section 3.4. The averaging scheme was first proposed and analyzed in expectation by Lacoste-Julien et al.

[26]. The analysis of the final iterate, suffix-average, and this non-uniform averaging scheme can all be seen as

applications of the Generalized Freedman inequality, Theorem 1.11.

Theorem 3.25. Let X ⊆ Rn be a convex set. Suppose that f : X → R is µ-strongly convex (with respect to

‖·‖2) and L-Lipschitz. Assume that:

(a) gt ∈ ∂ f (xt) for all t (with probability 1).

(b) ‖ẑt‖ ≤ L (with probability 1).

37

Set ηt =
2

µ(t+1) and γt =
t

T (T+1)/2 . Then, for any δ ∈ (0,1), with probability at least 1−δ ,

f

(
T

∑
t=1

γtxt

)
− f (x∗) ≤ O

(
L2 · log(1/δ)

µ
· 1

T

)
.

3.5.1 Main idea of proof of Theorem 3.25

The main idea of the proof is to follow the in-expectation analysis by Lacoste-Julien et al. [26], but keep

track of the mean zero “noise” terms which appear due to the stochastic nature of the subgradient oracle. In

particular, Lacoste-Julien et al. [26] repeatedly use the subgradient inequality for µ-strongly-convex functions

(see Eq. (1.1)):

f (xt)− f (x∗) ≤ 〈gt , xt − x∗ 〉− µ

2
‖xt − x∗‖2

2 ,

where xt is the current iterate, x∗ is the minimizer, and gt ∈ ∂ f (xt). The subgradient oracle used by SGD pro-

duces ĝt which is not necessarily a member of ∂ f (xt), and therefore the above inequality is not valid. However,

since E [ĝt] ∈ ∂ f (xt), we may write ĝt = gt − ẑt , where E [ẑt | Ft−1] = 0. Therefore, we obtain a “noisy”

subgradient inequality:

f (xt)− f (x∗)

≤ 〈gt , xt − x∗ 〉− µ

2
‖xt − x∗‖2

2 + 〈 ẑt , xt − x∗ 〉. (3.8)

Now, applying the analysis of Lacoste-Julien et al. [26] and replacing applications of the subgradient inequality

with Eq. (3.8) we obtain the following inequality.

Claim 3.26. Let ZT = ∑
T
t=1 t〈 ẑt , xt − x∗ 〉 . Then,

f

(
T

∑
t=1

γtxt

)
− f (x∗) ≤ O

(
L2

µT

)
+O

(
1

T 2

)
ZT .

Therefore, the main challenge lies in bounding ZT by O(T) with high probability. Notice that ZT is

the sum of conditionally mean-zero increments, making it the value of a martingale at time T . The stan-

dard Azuma inequality would require an almost sure bound of O(1/T) on its total variance, denoted VT =

O
(

∑
T
t=1 t2 ‖xt − x∗‖2

2

)
, in order to obtain the desired bound on ZT .

On the other hand, the classic Freedman inequality would require a high probability bound of O(1/T) on VT .

The most obvious way to do this is come up with tail bounds on ‖xt − x∗‖2 directly and this is the approach taken

by Rakhlin et al. [36], which led to the suboptimal O(log(log(T))/T) convergence rate for the suffix-averaging

strategy.

Instead, we turn to the Generalized Freedman Inequality by Harvey et al. [15], which can help us derive the

desired high-probability bound if we are able to prove that VT satisfies some specific recursive structure with ZT

– that is, VT ≤ O(T)ZT +O(T 2). The advantage of this approach is that, unlike the approach of applying the

classic Freedman inequality, we no longer require a tail bound on ‖xt − x∗‖2. Instead, we can achieve our goal

by using elementary analysis. This results in an elegant proof of our main result using a technique which we

38

believe can be broadly applicable to other first order stochastic optimization procedures.

3.5.2 High probability upper bound analysis

Assuming Claim 3.26 holds, it remains to bound the quantity ZT = ∑
T
t=1 t〈 ẑt , xt − x∗ 〉 with high probability.

The strategy here will be to show that VT := L2
∑

T
t=1 t2 ‖xt − x∗‖2 (an upper bound on the sum of the squared

increments of ZT), satisfies a recursive property involving ZT again. In particular, we will show that VT is

bounded by a linear transformation of ZT with probability one. Then, applying Theorem 3.21 gives

Lemma 3.27. Let ZT = ∑
T
t=1 t · 〈 ẑt , xt−x∗ 〉. Then for any δ ∈ (0,1), ZT ≤O

(
L2

µ
·T log(1/δ)

)
, with probability

at least 1−δ .

Lemma 3.27 and Claim 3.26 together prove Theorem 3.25. The proof of Claim 3.26 can be found in

Subsection 3.5.3 and the proof of Lemma 3.27 can be found in Subsection 3.5.4.

3.5.3 Proof of Claim 3.26

The proof follows carefully the analysis of Lacoste-Julien et al. [26], but we must be careful with the noise terms

as our goal is obtain a high probability bound.

Proof (of Claim 3.26). We write ẑt = gt − ĝt . Since f is µ-strongly convex, we have

f (xt)− f (x∗) ≤ 〈gt , xt − x∗ 〉− µ

2
‖xt − x∗‖2

2

= 〈 ĝt , xt − x∗ 〉− µ

2
‖xt − x∗‖2

2

+ 〈 ẑt , xt − x∗ 〉.

The first two terms can be bounded as follows.

〈 ĝt , xt − x∗ 〉− µ

2
‖xt − x∗‖2

2

=
1
ηt
〈 xt − yt+1, xt − x∗ 〉− µ

2
‖xt − x∗‖2

2

=
1

2ηt

(
‖xt − yt+1‖2

2 +‖xt − x∗‖2
2−‖yt+1− x∗‖2

2

)
− µ

2
‖xt − x∗‖2

2

≤ 1
2ηt

(
‖xt − yt+1‖2

2 +‖xt − x∗‖2
2−‖xt+1− x∗‖2

2

)
− µ

2
‖xt − x∗‖2

2 .

The first line uses the definition of Algorithm 1 and the last line uses a property of Euclidean projections: since

xt+1 is the projected point ΠX (yt+1) and x∗ ∈X , we have ‖xt+1− x∗‖2
2 ≤ ‖yt+1− x∗‖2

2.

It is convenient to scale by t in order to later obtain a telescoping sum. Using the definition of the gradient

39

step, i.e. xt − yt+1 = ηt ĝt , we have

t ·
(

f (xt)− f (x∗)−〈 ẑt , xt − x∗ 〉
)

≤ t ‖ηt ĝt‖2
2

2ηt
+ t
(1

2ηt
− µ

2

)
‖xt − x∗‖2

2−
t

2ηt
‖xt+1− x∗‖2

2

=
t ‖ĝt‖2

2
µ(t +1)

+
(

µt(t +1)
4

− 2µt
4

)
‖xt − x∗‖2

2−
t(t +1)µ

4
‖xt+1− x∗‖2

2

≤ (2L)2

µ
+

µ

4
·
(

t(t−1)‖xt − x∗‖2
2− t(t +1)‖xt+1− x∗‖2

2

)
.

Now, summing over t, the right-hand side telescopes and we obtain ∑
T
t=1 t · (f (xt)− f (x∗)) is bounded above by

T

∑
t=1

t · 〈 ẑt , xt − x∗ 〉+ 4L2 ·T
µ

.

Dividing by T (T +1)/2 and applying Jensen’s inequality, we obtain that

f
(T

∑
t=1

γtxt

)
− f (x∗)≤

T

∑
t=1

γt ·
(

f (xt)− f (x∗)
)

≤ 2
T (T +1)

T

∑
t=1

t · 〈 ẑt , xt − x∗ 〉︸ ︷︷ ︸
=ZT

+
8L2

µ(T +1)
.

�

3.5.4 Bounding ZT

Observe that ZT is a sum of a martingale difference sequence. Define dt = t · 〈 ẑt , xt − x∗ 〉, vt−1 := t2 ‖xt − x∗‖,
and VT = L2

∑
T
t=1 vt−1. Note that vt−1 is Ft−1-measurable. The next claim shows that vt−1 and dt satisfy the

assumptions of Generalized Freedman’s inequality (Theorem 3.21).

Claim 3.28. For all t and λ > 0, we have E [exp(λdt) | Ft−1]≤ exp
(

λ 2

2 L2 · vt−1

)
.

Proof. First, we can apply Cauchy-Schwarz to get that |t〈 ẑt , xt − x∗ 〉| ≤ t · ‖ẑt‖ · ‖xt − x∗‖ ≤ t ·L · ‖xt − x∗‖ be-

cause ‖ẑt‖≤L a.s. Next, applying Hoeffding’s Lemma ([30] - Lemma 2.6), we have E [exp(λ t〈 ẑt , xt − x∗ 〉) | Ft−1]≤
exp
(

λ 2

2 L2 · t2 ‖xt − x∗‖2
)

. �

To bound ZT , we will show that we can bound its sum of squared magnitudes (SSCM) by a linear combina-

tion of the increments. This will allow us to use the Generalized Freedman Inequality (Theorem 3.21).

Lemma 3.29. There exists non-negative constants α1, . . . ,αT such that maxi∈[T] {αi} = O
(

L2

µ
·T
)

and β =

O
(

L4

µ2 ·T 2
)

such that VT ≤ ∑
T
t=1 αtdt +β .

Proof (of Lemma 3.27). By Claim 3.28, we have E [exp(λdt) | Ft−1] ≤ exp
(

λ 2

2 L2 · vt−1

)
for all λ > 0 and

VT = ∑
T
t=1 L2 ·vt−1. By Lemma 3.29, we have VT ≤∑

T
t=1 ·αtdt + ·β . Plugging α = O

(
L2

µ
·T
)

, β = O
(

L4

µ2 ·T 2
)

,

and x = O
(

L2

µ
·T log(1/δ)

)
into Theorem 3.21 proves the lemma. �

40

It remains to prove Lemma 3.29. To do so, we will need the following two lemmata, which are adapted from

[36] to use the step sizes ηt =
2

µ(t+1) . For completeness, we provide a proof in the supplementary material.

Lemma 3.30 ([36] - Lemma 5). With probability 1, and for all t, ‖xt − x∗‖ ≤ 2L
µ
.

Lemma 3.31 ([36] - Lemma 6). For all t ≥ 3, there exists non-negative numbers a1(t), . . . ,at(t) with ai(t) =

Θ(i3/t4) and b1(t), . . . ,bt(t) with bi(t) = Θ(i2/t4), such that with probability 1 ‖xt+1− x∗‖2 is bounded above

by
4
µ

t

∑
i=3

ai(t)〈 ẑi, xi− x∗ 〉+ 4
µ2

t

∑
i=3

bi(t)‖ĝt‖2 .

Remark 3.32. Lemma 3.30 and Lemma 3.31 are true regardless of the assumption we place on ẑt .

Proof (of Lemma 3.29). Recall ‖ĝi‖≤ 2L because f is L-Lipschitz and ‖ẑi‖≤ L almost surely. By Lemma 3.30

and Lemma 3.31, we bound ∑
T
t=1 vt−1 and then multiply through by L2 to obtain a bound on VT :

T

∑
t=1

vt−1 =
T

∑
t=1

t2 · ‖xt − x∗‖2

≤ 56L2

µ2 +
T

∑
t=4

t2

(
4
µ

t−1

∑
i=3

ai(t−1)〈 ẑi, xi− x∗ 〉

)
+

4
µ2

T

∑
t=4

(
t−1

∑
i=3

bi(t−1)‖ĝi‖2

)

≤ 56L2

µ2 +
T

∑
t=4

t2

(
4
µ

t−1

∑
i=3

ai(t−1)〈 ẑi, xi− x∗ 〉

)
+

4(2L)2

µ2

T

∑
t=4

(
t−1

∑
i=3

bi(t−1)

)

=
4
µ

T

∑
t=4

t2

(
t−1

∑
i=3

ai(t−1)〈 ẑi, xi− x∗ 〉

)
+

16 ·L+2

µ2

T

∑
t=4

t2

(
t−1

∑
i=3

bi(t−1)

)
+

56L2

µ2

=
T−1

∑
i=3

4
µ

(
T

∑
t=i+1

t2 · ai(t−1)
i

)
︸ ︷︷ ︸

:=αi

·i〈 ẑi, xi− x∗ 〉+ 16 ·L2

µ2

T

∑
t=4

t2

(
t−1

∑
i=3

bi(t−1)

)
+

56L2

µ2︸ ︷︷ ︸
:=β

Define α1,α2,αT = 0. We have VT ≤ ∑
T
i=1 αi · i · 〈 ẑi, xi− x∗ 〉+β . It remains to show max{αi} = O

(
T
µ

)
and

β = O
(

L2

µ2 T 2
)

(multiplying through by L2 yields the bound on VT). To bound max{αi}, observe that for

i ∈ {3, . . . ,T −1} ,

T

∑
t=i+1

t2 · ai(t−1)
i

=
T

∑
t=i+1

t2O
(

i2

t4

)
=

T

∑
t=i+1

t2O
(

1
t2

)
= O(T − i) .

41

To bound β , observe

T

∑
t=4

t2

(
t−1

∑
i=3

bi(t−1)

)
=

T

∑
t=4

t2
t−1

∑
i=3

O
(

i2

t4

)

=
T

∑
t=4

t2
t−1

∑
i=3

O
(

1
t2

)
=

T

∑
t=4

O(t) = O(T 2).

�

3.5.5 Missing proofs from Subsection 3.5.4

Both of the proofs in this section are slight modifications of the proofs found by Rakhlin et al. [36].

Proof (of Lemma 3.30). Due to strong convexity and the fact that f (xt)− f (x∗)≥ 0, we have

L‖xt − x∗‖ ≥ ‖gt‖‖xt − x∗‖

≥ 〈gt , xt − x∗ 〉

≥ µ

2
‖xt − x∗‖2 ,

where we used L-Lipschitzness of f to bound ‖gt‖ by L. �

Proof (of Lemma 3.31). The definition of strong convexity yields

〈gt , xt − x∗ 〉 ≥ f (xt)− f (x∗)+
µ

2
‖xt − x∗‖2 .

Strong convexity and the fact that 0 ∈ ∂ f (x∗) implies

f (xt)− f (x∗)≥ µ

2
‖xt − x∗‖2 .

Next, recall that for any x∈X , and for any z, we have ‖ΠX (z)− x‖≤ ‖z− x‖ . Lastly, recall ηt =
2

µ(t+1) . Using

these, we have

‖xt+1− x∗‖2

= ‖ΠX (xt −ηt ĝt)− x∗‖2 ≤ ‖xt −ηt ĝt − x∗‖2

= ‖xt − x∗‖2−2ηt〈 ĝt , xt − x∗ 〉+η
2
t ‖ĝt‖2

= ‖xt − x∗‖2−2ηt〈gt , xt − x∗ 〉+2ηt〈 ẑt , xt − x∗ 〉

+η
2
t ‖ĝt‖2

≤ ‖xt − x∗‖2−2ηt (f (xt)− f (x∗))−ηt µ ‖xt − x∗‖2 +2ηt〈 ẑt , xt − x∗ 〉+η
2
t ‖ĝt‖2

≤ (1−2ηt µ)‖xt − x∗‖2 +2ηt〈 ẑt , xt − x∗ 〉+η
2
t ‖ĝt‖2

=

(
1− 4

t +1

)
‖xt − x∗‖2 +

4
µ(t +1)

〈 ẑt , xt − x∗ 〉+ 4
µ2(t +1)2 ‖ĝt‖2 . (3.9)

42

Repeatedly applying Eq. (3.9) until t = 4, yields the following upper bound on ‖xt+1− x∗‖2

4
µ

t

∑
i=4

[
1

i+1

t

∏
j=i+1

(
1− 4

j+1

)]
· 〈 ẑi, xi− x∗ 〉+ 4

µ2

t

∑
i=4

[
1

(i+1)2

t

∏
j=i+1

(
1− 4

j+1

)]
· ‖ĝt‖ .

Observing that

t

∏
j=i+1

(
1− 4

j+1

)
=

t

∏
j=i+1

j−3
j+1

=
(i−2) · (i−1) · i · (i+1)
(t−2) · (t−1) · t · (t +1)

,

proves the lemma by taking ai(t) = 1
i+1 ·

(i−2)·(i−1)·i·(i+1)
(t−2)·(t−1)·t·(t+1) and bi(t) = 1

(i+1)2 · (i−2)·(i−1)·i·(i+1)
(t−2)·(t−1)·t·(t+1) �

43

Chapter 4

Probabilistic Tools

4.1 Proof of Theorem 1.11 and corollaries
In this section we prove Theorem 1.11 and derive some corollaries. We restate Theorem 1.11 here for conve-

nience.

Theorem 1.11. Let {di,Fi}n
i=1 be a martingale difference sequence. Suppose vi−1, for i ∈ [n], are positive

and Fi−1-measurable random variables such that E [exp(λdi) | Fi−1]≤ exp
(

λ 2

2 vi−1

)
for all i ∈ [n], λ > 0. Let

St = ∑
t
i=1 di and Vt = ∑

t
i=1 vi−1. Let αi ≥ 0 and set α = maxi∈[n] αi. Then

Pr

[
n⋃

t=1

{
St ≥ x and Vt ≤

t

∑
i=1

αidi +β

}]
≤ exp

(
− x

4α +8β/x

)
∀x,β > 0.

The proof of Theorem 1.11 is inspired by a standard proof of Freedman’s inequality. The standard proof

begins with the observation that Mt(λ) := exp
(

λSt − λ 2

2 Vt

)
defines a supermartingale for any λ > 0 (recall

that St is the martingale at time t and Vt is the sum of squared conditional subgaussian norms (SSCSN) at

time n). Then, noting that {Sn ≥ x and Vn ≤ y} ⊂
{

λSn− λ 2

2 Vn ≥ λx− λ 2

2 y
}

for any λ > 0 allows one to

apply the exponentiated Markov inequality (Lemma A.1) to the larger event to obtain Pr [Sn ≥ x,Vn ≤ y] ≤
exp
(
−λx+ λ 2

2 y
)

E [Mn] . Since (Mt)t∈N is a supermartingale with M0 = 1, minimizing over λ yields a sim-

plified version of Freedman’s inequality. To obtain Freedman’s inequality in full generality, one may apply a

modification of the above argument involving the stopping time τ = min{ t : St ≥ x,Vt ≤ y } .
In our setting, we also aim to design a supermartingale whose role is similar to the supermartingale Mt(λ)

plays in the proof above. However, due to the entanglement between our martingale and its SSCSN process

in the event whose probability we aim to bound (i.e. the chicken and egg phenomenon), some special care is

required in order to derive such a supermartingale. Indeed, as we will see in the following proof, we will need

to carefully balance the parameters c and λ̃ .

Proof (of Theorem 1.11). Suppose 0 ≤ λ < 1/(2α); the actually choice of λ will be optimized later. Define

44

c = c(λ ,α) as in Claim 4.2. Let λ̃ = λ + cλ 2α . Define U0 := 1 and for t ∈ [n], define

Ut(λ) := exp

(
t

∑
i=1

(λ + cλ
2
αi)di−

t

∑
i=1

λ̃ 2

2
vi−1

)
.

Claim 4.1. Ut(λ) is a supermartingale w.r.t. Ft .

Explanation of the role of Ut(λ) and why it differs from Mt(λ). Notice that the supermartingale Ut(λ)

differs from Mt(λ). The scaling on the increments di in the definition of Ut(λ) are specifically designed with the

goal of applying the exponentiated Markov inequality (Lemma A.1) to expose the expectation of a nonnegative

supermartingale with bounded initial value. This was a key step in the proof of Freedman’s inequality described

above. In our setting, recalling that St = ∑
t
i=1 di, we have{

n

∑
i=1

(λ + cλ
2
αi)di− cλ

2Vt ≥ λx− cλ
2
β

}
︸ ︷︷ ︸

:=E

⊃

{
St ≥ x,Vt ≤

n

∑
i=1

αidi +β

}
︸ ︷︷ ︸

:=G

,

where the scaling on the increments di in the event E matches the scaling in Ut(λ) and the event G is essen-

tially the event we would like to analyze. Notice that E is an event which we may apply the exponentiated

Markov inequality to. Ideally, an application of Lemma A.1 on the event E would yield an upper bound of

exp(−λx+cλ 2β) times the expectation of a nonnegative supermartingale with bounded initial value as was the

case in the standard proof outlined above. Instead, Lemma A.1 yields the expectation of the following process

exp
(
An− cλ 2Vn

)
, where An = ∑

n
i=1(λ + cλ 2αi)di, and it is unclear whether this is a supermartingale. Now,

according to Claim 4.1 exp
(

An− λ̃ 2

2 Vn

)
is a supermartingale. In order to enforce that Lemma A.1 yields an

upper bound on the probability of E involving the expectation of a supermartingale, we will enforce cλ 2 = λ̃ 2

2

so that the expectation of the random process which results from applying Lemma A.1 on the event E is equal

to E [Un(λ)] . Formally,

Pr [G] ≤ Pr [E] ≤ exp
(
−λx− cλ

2
β
)

E
[

exp
(
An− cλ

2Vn
)]

(by Lemma A.1)

= exp
(
−λx− cλ

2
β
)

E [Un(λ)] (by choice of c)

≤ exp
(
−λx− cλ

2
β
)

(Ut(λ) is a supermartingale).

Proof (of Claim 4.1). For all t ∈ [n]:

E [Ut(λ) | Ft−1] = Ut−1(λ)exp

(
− λ̃ 2

2
vt−1

)
E
[

exp
(
(λ + cλ

2
αt)dt

)
| Ft−1

]
≤Ut−1(λ)exp

(
− λ̃ 2

2
vt−1

)
exp
(
(λ + cλ 2αt)

2

2
vt−1

)

≤Ut−1(λ)exp

(
− λ̃ 2

2
vt−1

)
exp

(
λ̃ 2

2
vt−1

)
= Ut−1(λ),

45

where the second line follows from the assumption that E [exp(λdt) | Ft−1]≤ exp
(

λ 2

2 vt−1

)
for all λ > 0 and

the third line is because λ + cλ 2αt ≤ λ̃ (since c≥ 0 and αt ≤ α). We conclude that Ut(λ) is a supermartingale

w.r.t. Ft . �

Define the stopping time T = min{ t : St ≥ x and Vt ≤ ∑
t
i=1 αidi +β } with the convention that min /0 = ∞.

Since Ut is a supermartingale w.r.t. Ft , then UT∧t is a supermartingale w.r.t. Ft ([25, Theorem 10.15]). Recall

that ST∧n = ∑
T∧n
i=1 di.

Pr

[
n⋃

t=1

{
St ≥ x and Vt ≤

t

∑
i=1

αidi +β

}]
= Pr

[
ST∧n ≥ x and VT∧n ≤

T∧n

∑
i=1

αidi +β

]

= Pr

λST∧n ≥ λx and cλ
2VT∧n ≤ cλ

2
T∧n

∑
i=1

αidi + cλ
2
β︸ ︷︷ ︸

:=A

(subtracting inequalities from A) ≤ Pr

[
T∧n

∑
i=1

(λ + cλ
2
αi)di− cλ

2VT∧n ≥ λx− cλ
2
β

]

(by Lemma A.1) ≤ E

[
exp

(
T∧n

∑
i=1

(λ + cλ
2
αi)di− cλ

2VT∧n

)]
· exp(−λx+ cλ

2
β).

Recall that c was chosen (via Claim 4.2) so that cλ 2 = (λ + cλ 2α)2/2 = λ̃ 2/2. This selection of c is crucial to

connect the result of the application of Lemma A.1 above to the supermartingale Ut(λ). Hence,

E

[
exp

(
T∧n

∑
i=1

(λ + cλ
2
αi)di− cλ

2VT∧n

)]
= E

[
exp

(
T∧n

∑
i=1

(λ + cλ
2
αi)di−

λ̃ 2

2
VT∧n

)]
= E [UT∧n(λ)] ≤ 1,

where the inequality is by the optional stopping theorem for bounded stopping times ([25, Theorem 10.11]).

Since λ < 1/(2α) was arbitrary, we conclude that

Pr

[
n⋃

t=1

{
St ≥ x and Vt ≤

t

∑
i=1

αidi +β

}]
≤ exp(−λx+ cλ

2
β)

≤ exp(−λx+2λ
2
β),

46

where the inequality is because c≤ 2. Now, we can pick λ = 1
2α+4β/x <

1
2α

to conclude that

Pr

[
n⋃

t=1

{
St ≥ x and Vt ≤

t

∑
i=1

αidi +β

}]
≤ exp(−λ (x−2λβ))

≤ exp
(
−λ

(
x− 2β

2α +4β/x

))
≤ exp

(
−λ

(
x− 2β

4β/x

))
= exp

(
−λx

2

)
= exp

(
− x

4α +8β/x

)
.

�

Claim 4.2. Let α ≥ 0 and λ ∈ [0,1/2α). Then there exists c = c(λ ,α) ∈ [0,2] such that 2cλ 2 = (λ + cλ 2α)2.

Proof. If λ = 0 or α = 0 then the claim is trivial (just take c = 1/2). So assume α,λ > 0.

The equality 2cλ 2 = (λ + cλ 2α)2 holds if and only if p(c) := α2λ 2c2 +(2λα−2)c+1 = 0. The discrim-

inant of p is (2λα − 2)2− 4α2λ 2 = 4− 8λα . Since λα ≤ 1/2, the discriminant of p is non-negative so the

roots of p are real. One root of p is located at

c =
2−2αλ −

√
(2αλ −2)2−4λ 2α2

2λ 2α2 =
1−αλ −

√
1−2αλ

α2λ 2 .

Set γ = αλ , and observe that 2γ ∈ [0,1]. Using the numeric inequality
√

1− x ≥ 1− x/2− x2/2 valid for all

x≤ 1, we have

c =
1− γ−

√
1−2γ

γ2 ≤ 1− γ− (1− γ−2γ2)

γ2 = 2.

On the other hand, using the numeric inequality
√

1− x≤ 1− x/2− x2/8 valid for all x ∈ [0,1], we have

c =
1− γ−

√
1−2γ

γ2 ≥ 1− γ− (1− γ− γ2/2)
γ2 =

1
2
≥ 0.

�

4.1.1 Corollaries of Theorem 1.11

In this thesis, we often deal with martingales, Mn, where the sum of squared conditional magnitudes (SSCM) of

the martingale is bounded by a linear transformation of the martingale, with high probability (which is what we

often refer to as the “chicken and egg” phenomenon — the bound on the SSCM of Mn involves Mn itself). Trans-

forming these entangled high probability bounds on the SSCM into high probability bounds on the martingale

itself are easy consequences of our Generalized Freedman inequality (Theorem 1.11).

Lemma 4.3. Let {di,Fi}n
i=1 be a martingale difference sequence. Let vi−1 be a Fi−1 measurable random

variable such that E [exp(λdi) | Fi−1] ≤ exp
(

λ 2

2 vi−1

)
for all λ > 0 and for all i ∈ [n]. Define Sn = ∑

n
i=1 di

47

and define Vn = ∑
n
i=1 vi−1. Suppose that there exists α1, . . . ,αn ≥ 0 and R(δ) > 0 (for δ ∈ (0,1)) such that

Pr [Vn ≤ ∑
n
i=1 αidi +R(δ)]≥ 1−δ . Let α = maxi∈[n] αi. Then,

Pr [Sn ≥ x]≤ δ + exp
(
− x2

4αx+8R(δ)

)
∀x > 0.

Proof. Fix δ ∈ (0,1). Define the events E (x) = {Sn ≥ x} and G = {Vn ≤ ∑
n
i=1 αidi +R(δ)}. Then

Pr [Sn ≥ x] = Pr [E (x)∧G] + Pr [E (x)∧G c]

≤ Pr [E (x)∧G]+Pr [G c]︸ ︷︷ ︸
≤δ

≤ exp
(
− x2

4αx+8R(δ)

)
+δ ,

where the final inequality is due to applying Theorem 1.11 to Pr [E (x)∧G]. �

In this thesis, we use Lemma 4.3 via the following two corollaries. The first Corollary can be proven by using

the original Freedman’s inequality.

Corollary 4.4. Let {Ft}T
t=1 be a filtration and suppose that at are Ft-measurable random vectors and bt are

Ft−1-measurable random vectors. Further, suppose that

1. ‖at‖ ≤ 1 almost surely and E [at | Ft−1] = 0; and

2. ∑
T
t=1 ‖bt‖2 ≤ R log(1/δ) with probability at least 1−O(δ).

Define dt = 〈at , bt 〉. Then ∑
T
t=1 dt ≤ O

(√
R log(1/δ)

)
with probability at least 1−O(δ).

Proof. Since ‖at‖ ≤ 1, by Cauchy-Schwarz we have that |dt | ≤ ‖bt‖. Therefore, E
[

exp
(
λdt
)
| Ft−1

]
≤

exp
(

λ 2

2 ‖bt‖2) for all λ by Lemma A.5. Next, applying Lemma 4.3 with dt = 〈at , bt 〉 and vt−1 = ‖bt‖2, αi = 0

for all i, and R(δ) = R log(1/δ) yields

Pr

[
T

∑
t=1

dt ≥ x

]
≤ δ + exp

(
− x2

8R log(1/δ)

)
.

The last term is at most δ by taking x =
√

8R log(1/δ). �

Corollary 4.5. Let {Ft}T
t=1 be a filtration and suppose that at are Ft-measurable random vectors and bt are

Ft−1-measurable random vectors. Define dt = 〈at , bt 〉. Assume that ‖at‖≤ 1 almost surely and E [at | Ft−1] =

0. Furthermore, suppose that there exists R> 0 and non-negative values {αt}T−1
t=1 where max{αt}T−1

t=1 =O
(√

R
)
,

such that for every δ sufficiently small, with probability at least 1−O(δ), we have ∑
T
t=1 ‖bt‖2 ≤ ∑

T−1
t=1 αtdt +

R log(1/δ). Then ∑
T
t=1 dt ≤ O

(√
R log(1/δ)

)
with probability at least 1−δ .

Proof. We prove only the first case, the second case can be proved by bounding
√

log(1/δ) by log(1/δ) and

using the proof of the first case.

Since ‖at‖≤ 1, by Cauchy-Schwarz we have that |dt | ≤ ‖bt‖. Therefore, E
[

exp
(
λdt
)
| Ft−1

]
≤ exp

(
λ 2

2 ‖bt‖2)
for all λ by Lemma A.5. Next, applying Lemma 4.3 with dt = 〈 at , bt 〉 and vt−1 = ‖bt‖2, with αT = 0, and

48

R(δ) = R log(1/δ) yields

Pr

[
T

∑
t=1

dt ≥ x

]
≤ δ + exp

(
− x2

4
(
maxT−1

t=1 {αt}
)

x+8R log(1/δ)

)
. (4.1)

Recall that maxT−1
t=1 {αt} = O(

√
R). Thus, for some x = Θ

(√
R log(1/δ)

)
, the last term in (4.1) is at most δ .

Replacing δ with δ/2 completes the proof. �

4.2 Proof of Theorem 1.19

Theorem 1.19. Let (Xt)
T
t=1 be a stochastic process and let (Ft)

T
t=1 be a filtration such that Xt is Ft measurable

and Xt is non-negative almost surely. Let αt ∈ [0,1) and βt ,γt ≥ 0 for every t. Assume that E [exp(λX1)] ≤
exp(λK) for λ ∈ (0,1/K] where K = max1≤t≤T

(
2γt

1−αt
, 2β 2

t
1−αt

)
. Let ŵt be a mean-zero random variable condi-

tioned on Ft such that |ŵt | ≤ 1 almost surely for every t. Suppose that Xt+1 ≤ αtXt +βtŵt
√

Xt + γt for every t.

Then, the following hold.

• For every t, Pr [Xt ≥ K log(1/δ)]≤ eδ .

• More generally, if σ1, . . . ,σT ≥ 0, then Pr
[

∑
T
t=1 σtXt ≥ K log(1/δ)∑

T
t=1 σt

]
≤ eδ .

Proof (of Theorem 1.19).

We begin by deriving a recursive MGF bound on Xt .

Claim 4.6. Suppose 0≤ λ ≤min1≤t≤T

(
1−αt
2β 2

t

)
. Then for every t,

E [exp(λXt+1)] ≤ exp(λγt)E
[

exp
(

λXt

(
1+αt

2

))]
.

Proof. Since Xt is non-negative almost surely, we may define the random variable X = βtŵt
√

Xt . Since |ŵt | ≤ 1

almost surely and Xt is Ft-measurable, E
[

exp
(
λ 2X2

)
| Ft

]
≤ exp

(
λ 2β 2

t Xt
)

for all λ . Since E [ŵt | Ft] = 0

we may apply Claim A.6 with c2 = β 2
t Xt to obtain

E
[

exp(λβtŵt
√

Xt) | Ft
]
= E [exp(λX) | Ft] ≤ exp

(
λ

2
β

2
t Xt
)
. (4.2)

Hence,

E [exp(λXt+1)] ≤ E
[

exp
(
λαtXt +λβtŵt

√
Xt +λγt

)]
(by assumption)

= E
[

exp(λαtXt +λγt)E
[

exp
(
λβtŵt

√
Xt
)
| Ft

]]
≤ E

[
exp
(
λαtXt +λ

2
β

2
t Xt +λγt

)]
(by Eq. (4.2))

= E
[

exp
(
λXt

(
αt +λβ

2
t
)
+λγt

)]
≤ E

[
exp
(

λγt +λXt

(
1+αt

2

))] (
because λ ≤ 1−αt

2β 2
t

)
.

�

Next, we prove an MGF bound on Xt .

49

Claim 4.7. For every t and for all 0≤ λ ≤ 1/K, E [exp(λXt)]≤ exp(λK).

Proof. Let λ ≤ 1/K. We proceed by induction over t. The base case holds by assumption. Assume that

E [exp(λXt)]≤ exp(λK). Now, consider the MGF of Xt+1:

E [exp(λXt+1)] ≤ E
[

exp
(

λγt +λXt

(
1+αt

2

))]
(by Claim 4.6)

≤ exp
(

λγt +λK
(

1+αt

2

))
,

where the first inequality is valid because λ ≤ 1/K ≤ min1≤t≤T

(
1−αt
2β 2

t

)
and the second inequality follows be-

cause (1+αt)/2 < 1 and so we can use the induction hypothesis since λ (1+αt)/2 < λ ≤ 1/K. Furthermore,

the definition of K ensures

K ≥ 2γt

1−αt
=

γt

1−
(1+αt

2

) ,
which shows that γt +K

(1+αt
2

)
≤ K. Hence,

E [exp(λXt+1)] ≤ exp(λK) ,

as desired. �

Now we are ready to complete the proof of both claims in Theorem 1.19. The first claim in Theorem 1.19

follows by observing our MGF bound on Xt and then applying the transition from MGF bounds to tail bounds

given by Claim A.7 (with c = 1 and C = K).

Next, we prove the second claim in Theorem 1.19. Claim 4.7 gives that for every t and for all λ ≤ 1/(σtK),

we have E [exp(λσtXt)]≤ exp(λσtK). Hence, we can combine these MGF bounds using Lemma A.4 to obtain

E
[

exp
(
λ ∑

T
t=1 σtXt

)]
≤ exp

(
λK ∑

T
t=1 σt

)
for all λ ≤

(
K ∑

T
t=1 σt

)−1. With this MGF bound in hand, we may

apply the transition from MGF bounds to tail bounds given by Claim A.7 to complete the proof of the second

claim in Theorem 1.19. �

50

Chapter 5

Infinite Dimensional and Probabilistic Lower
Bounds

5.1 Functions attaining large error infinitely often
In order to achieve large error for the T iterate, Theorem 1.12 constructs a strongly convex function parameter-

ized by T . (Similarly, Theorem 1.14 constructs a Lipschitz function parameterized by T .) It is not possible for

a single function to achieve error ω(1/T) for every T ≥ 1 in the strongly-convex case (or ω(1/
√

T) for every

T ≥ 1 in the Lipschitz case). The reason is that this would contradict the fact that suffix averaging achieves

error O(1/T) in the strongly-convex case (and that the average over all iterates achieves error O(1/
√

T) in the

Lipschitz case). Nevertheless, for every function g(T) = o(log(T)/T) it possible to construct a strongly convex

function which achieves error C ·g(T), for every C > 0 for infinitely many T . (A similar statement is true for the

Lipschitz case.) In the remainder of this section, we use `2 to denote the space of square-summable sequences

in RN.

Theorem 5.1. For every non-negative g(T) = o(log(T)/T), and for any c > 0, there exists a convex function

f : X → R where X ⊂ `2, such that f is (3/c)-Lipschitz and (1/c)-strongly convex, infx∈X f (x) = 0 and

satisfies the following. Suppose that Algorithm 1 is executed from the initial point x1 = 0 with step sizes ηt = c/t.

Then,

limsup
T→∞

f (xT)

g(T)
= +∞.

Theorem 5.2. For every non-negative g(T) = o
(

log(T)/
√

T
)

and for every c> 0, there exists a convex function

f : X →R where X ⊂ `2, such that f is (1/c)-Lipschitz, infx∈X f (x) = 0 and satisfies the following. Suppose

that Algorithm 1 is executed from the initial point x1 = 0 with step sizes ηt = c/
√

t. Then,

limsup
T→∞

f (xT)

g(T)
= +∞.

Remark 5.3. We provide the proof of Theorem 5.1 in Sub-subsection 5.1.1. The proof of Theorem 5.2 is omitted

due to its similarity with the proof of Theorem 5.1. We prove Theorem 5.1 in the setting where c = 1. The result

follows in full generality as a corollary of the c = 1 case and an analogous statement to Lemma 2.1 for Hilbert

51

spaces.

Since we are now working with infinite dimensional functions, rigour requires us to state the definition of

the subdifferential of a convex function applicable to functions defined on a Hilbert space E.

Definition 5.4 ([5, Definition 2.30]). Let E be a Hilbert space and let f be a proper convex function defined on

E. Then, g∈ E∗ (the dual Hilbert space of E) is a subgradient of f at x if, for all y∈ E, f (y)≥ f (x)+〈y−x, g〉.
The subdifferential of f at x, denoted ∂ f (x), is the collection of subgradients of f at x.

The main tool we use to prove Theorem 5.1 and Theorem 5.2 is the following natural result. In a nutshell,

Lemma 5.5 states that running Algorithm 1 on an infinite sum of convex functions is equivalent to running an

instance of Algorithm 1 for each summand in parallel. While the statement of the following result is fairly

intuitive, the proof of Lemma 5.5 is rather technical. Therefore, we defer its proof to Subsection 5.1.2 and focus

on using Lemma 5.5 to prove Theorem 5.1 and Theorem 5.2.

Lemma 5.5. Consider a family of non-negative, convex functions, { fi}∞
i=1, where fi : RTi → R. Let Xi ⊆ RTi

be a closed and convex set such that Xi ⊆BTi(0,R), where BTi(0,R) is the Euclidean ball of radius R in RTi .

Assume that fi is bounded by M and L Lipschitz on Xi for every i. Define f : ∏
∞
i=1RTi → R and X as

f
(

x(1),x(2), . . .
)

=
∞

∑
i=1

1
C2

i
fi

(
Cix(i)

)
and X =

∞

∏
i=1

Xi

Ci
, (5.1)

where x(i) ∈ RTi and ∑
∞
i=1

1
Ci
≤ 1, with Ci ∈ [1,∞). Then, the following hold:

1. f (x) is well-defined for every x ∈X (i.e. limn→∞ ∑
n
i=1

1
C2

i
fi(Cix(i)) exists for all x ∈X).

2. f is convex.

3. If fi is α strongly convex on Xi for every i, then f is α strongly convex on X .

4. If fi is subdifferentiable on Xi (∂ fi(x) 6= /0 for every x ∈Xi), then f is subdifferentiable on X . Therefore,

if one could execute Algorithm 1 individually for each fi, then one can execute Algorithm 1 on the function

f .

5. f is L-Lipschitz on X . That is, for every x ∈X and g ∈ ∂ f (x), ‖g‖ ≤ L.

6. Let σi be a map such that for every x∈Xi, σi(x)∈ ∂ fi(x). Let x(i)t denote the t-th iterate of Algorithm 1 on

the function fi using the feasible region Xi, step sizes ηt , initial point x(i)1 and the subgradient oracle σi.

Then, there is a map σ such that for every x ∈X , σ(x) ∈ ∂ f (x) and the t-th iterate of gradient descent

on the function f using the feasible region X , step sizes ηt , initial point x1 = (x(1)1 /C1,x
(2)
1 /C2, . . .) and

the subgradient oracle σ is given by

xt =

(
x(1)t

C1
,
x(2)t

C2
, . . .

)
.

How Lemma 5.5 will be used. Lemma 5.5 allows one to carefully design a single infinite dimensional func-

tion from many finite dimensional functions (see Eq. (5.1)) while maintaining crucial properties such as con-

vexity, Lipschitzness, and boundedness. Importantly, running Algorithm 1 on this infinite dimensional function

is “equivalent” to running an instance of Algorithm 1 for each finite dimensional function in parallel: The value

of the t-th iterate of the infinite dimensional instance can be obtained by a weighted sum of the values of t-th

52

iterates of each of the finite dimensional instances. Therefore, if we use fi = fTi where fTi are the Ti-dimensional

functions from Section 2.1 which exhibit Ω(log(Ti)/Ti) error after Ti iterations of Algorithm 1, then we could

enforce error Ω(log(Ti)/Ti) at iteration Ti as long as each fi were non-negative. Letting limi→∞ Ti = ∞ and ig-

noring the scaling factors 1/Ci, we have that limsupT→∞

f (xT)
log(T)/T = Ω(1). The presence of the scaling factors

1/Ci, which are necessary for maintaining Lipschitz-ness, weaken the result to limsupT→∞

f (xT)
g(T) =+∞ for any

g(T) = o(log(T)/T).

5.1.1 Proof of Theorem 5.1

We will prove Lemma 5.6, which is quite similar to Theorem 5.1, except that it appears to have a stronger

hypothesis. However, Lemma 5.7 implies that the hypothesis is actually not stronger: For each g= o(log(T)/T)

we also have g = o
(

log(T)/(T ·h(T))
)

for some function h such that limT→∞ h(T) = +∞. Thus Theorem 5.1

follows from Lemma 5.6.

Lemma 5.6. For every non-negative g(T) = o
(

log(T)/(T ·h(T))
)

where limT→∞ h(T) = +∞, there exists a

convex function f : X → R where X ⊂ `2 is convex and f is 3-Lipschitz, 1-strongly convex, infx∈X f (x) = 0

and satisfies the following. Suppose that Algorithm 1 is executed from the initial point x1 = 0 with step sizes

ηt = 1/t. Then,

limsup
T→∞

f (xT)

g(T)
= +∞.

Lemma 5.7. Suppose g(T) is a non-negative function such that g(T) = o(log(T)/T). Then we may write

g(T) = o(log(T)/(T ·h(T))) for some h(T) satisfying limT→∞ h(T) = +∞.

Proof. Let h(T) =
√

log(T)/T
g(T) . Then, limT→∞ h(T) = +∞ because g = o(log(T)/T) . We have

lim
T→∞

[
g(T)

log(T)/(T ·h(T))

]
= lim

T→∞

[√
g(T)

log(T)/T

]
= 0,

because g(T) = o(log(T)/T) . �

Proof (of Lemma 5.6).

Showing that limsupT→∞

f (xT)
g(T) =+∞ is equivalent to showing the following:

∀M > 0, ∀N ∈ N, ∃T ≥ N s.t. f (xT)> Mg(T). (5.2)

We would like to apply Lemma 5.5, and so we must define functions fi which satisfy the required properties.

Let Ci = 2i. Let Ti ≥ i be such that

∀t ≥ Ti ≥ i : g(t)≤ 1
4C2

i

(
log t

t ·h(t)

)
, (5.3)

which is possible because g(T)= o(log(t)/(t ·h(t))). Our functions fi are defined mainly using the Ti-dimensional

version of the function defined in Section 2.1, which we will denote by fTi and provides the Ω(log(T)/T) lower

bound on the error of Algorithm 1. Recall some important properties of the function fTi which were derived in

Section 2.1. Let BT (0,R) be the Euclidean ball of radius R in RT .

53

• fTi is 3-Lipschitz and 1-strongly convex over BTi(0,1),

• There exists a subgradient oracle such that running Algorithm 1 on fTi using this oracle, feasible region

BTi(0,1), and step sizes ηt = 1/t satisfies fTi(xTi+1)≥ logTi
4Ti

(this is the content of Theorem 1.12).

Defining the functions fi. Using fTi as the definition of fi in an application of Lemma 5.5 is problematic

because fTi is not guaranteed to be non-negative. As a consequence, we will not be able to assert that the value

of the Ti-th iterate of Algorithm 1 on f is Ω

(
log(Ti)

C2
i Ti

)
, even though the proof1 Theorem 1.12 shows that this

true for the Ti-th iterate of Algorithm 1 on fTi and Lemma 5.5 guarantees that the value of the t-h iterate for

f is a scaled sum of the values of the t-th iterates of the fTi’s. Instead, we augment the definition of fTi so

that the function remains Lipschitz, strongly convex, attains the lower bound from Theorem 1.12, and is also

non-negative. Note that simply taking the max of 0 and fTi is not a feasible approach since the resulting function

is not strongly convex.

Let fi : BTi(0,1)→ R be defined as fi(x) = max{ fTi(x),
1
2 ‖x‖

2}. It is straightforward to check that fi is 3-

Lipschitz, bounded by 3 on BTi(0,1) and also 1-strongly convex (these properties follow easily from the fact that

fTi is 3-Lipschitz and 1 strongly convex on BTi(0,1)). Also, because fTi(0) = 0, we see that infx∈BTi (0,1)
fi(x) =

0. Finally, fi is subdifferentiable on Xi, and there is a subgradient oracle for which fi can be made to achieve

the same lower bound as fTi achieves in Theorem 1.12. This is formalized in the following claim, whose proof

we defer to Subsection 5.1.2.

Claim 5.8. There exists a subgradient oracle for the function fi such that if x(i)1 ,x(i)2 , . . . are the iterates produced

by running Algorithm 1 with the function fi, the feasible region BTi(0,1), the step sizes ηt = 1/t, and initial

point x(i)1 = 0 then,

fi(x
(i)
Ti+1) ≥

logTi

4Ti
. (5.4)

Defining the function f . Recall that Ci = 2i. We define f : ∏
∞
i=1 BTi(0,1)/Ci → R as follows. Let x =

(x(1),x(2), . . .) be such that x(i) ∈BTi(0,1)/Ci. Then, define

f
(

x(1),x(2), . . .
)

:=
∞

∑
i=1

1
C2

i
fi

(
Cix(i)

)
.

Note that f is non-negative and f (0) = 0. Therefore, infx∈X f (x) = 0. Let σi be the subgradient oracle for fi

whose existence is guaranteed by Claim 5.8 and let x(i)t denote the t-th iterate of Algorithm 1 on fi using the

subgradient oracle σi, initial point x(i)1 = 0, and step size ηt = 1/t. Then, using Lemma 5.5, we get the following:

• f is well defined and subdifferentiable over X ,

• f is 3-Lipschitz over X ,

• f is 1-strongly convex over X ,

1The statement of Theorem 1.12 states that fTi(xTi+1)− infx∈X fTi(x) = Ω

(
logTi

Ti

)
, however the proof argues that fTi(xTi+1) =

Ω

(
logTi

Ti

)
and shows that infxX fTi(x)≤ 0

54

• There exists a subgradient oracle, σ , for f over X such that the t-th iterate, xt , of Algorithm 1 on f using

the subgradient oracle σ , initial point x1 = 0, and step size ηt = 1/t satisfies,

xt =

(
x(1)t

C1
,
x(2)t

C2
, . . .

)
. (5.5)

Showing Eq. (5.2) holds. Let M > 0 and let N ∈ N. The following is true because limT→∞ h(T) = ∞.

∃n s.t., ∀T ≥ n, h(T)> M. (5.6)

Consider N′ = max{n,N}. Then, we have the following:

f
(
xTN′+1

)
=

∞

∑
i=1

1
C2

i
fi

(
x(i)TN′+1

)
(by definition of f and Eq. (5.5))

≥ 1
C2

N′
fN′
(

x(N
′)

TN′+1

)
(each fi is non-negative)

≥ 1
4C2

N′

logTN′

TN′
(by Eq. (5.4))

≥ g(TN′)h(TN′) (by Eq. (5.3))

> M ·g(TN′) (because TN′ ≥ N′ ≥ n and using Eq. (5.6)).

Hence, we’ve shown for every M > 0 and for every N ∈ N, there exists t ≥ N (namely, TN′ ≥ N′ ≥ N) such that

f (xt)> M ·g(t). This demonstrates that Eq. (5.2) holds and therefore the proof is complete. �

5.1.2 Proof of Lemma 5.5

Throughout this subsection, we work under the assumptions of Lemma 5.5. That is, we assume we have a

family of non-negative convex functions { fi}∞

i=1 such that fi : RTi → R and closed convex sets Xi ⊂ RTi such

Xi is contained in some Euclidean ball of radius R, denoted BTi(0,R). We set X = ∏
∞
i=1

Xi
Ci

where ∑
∞
i=1

1
Ci
≤ 1

and Ci ∈ [1,∞) and define f : ∏
∞
i=1RTi →R as f (x(1),x(2), . . .) = ∑

∞
i=1

1
C2

i
fi(Cix(i)). We will prove Lemma 5.5 in

pieces. Combining Claim 5.9, Claim 5.11, Claim 5.13, Claim 5.14, and Claim 5.15 proves Lemma 5.5.

First, let us check that f is well defined.

Claim 5.9. For every x ∈X , limn→∞ ∑
n
i=1

1
C2

i
fi(Cix(i)) exists and is finite.

Indeed, this follows as a corollary of the following claim since a series with non-negative summands con-

verges if and only if it is bounded. Recall that fi are non-negative functions.

Claim 5.10. f is bounded by on X .

Proof. Let x = (x(1)/C1,x(2)/C2, . . .) ∈X .

f (x) =
∞

∑
i=1

1
C2

i
fi(x(i)) ≤ M

∞

∑
i=1

1
C2

i
≤ M,

because fi is bounded by M on Xi. �

55

Next, we prove the implications involving convexity and strong convexity.

Claim 5.11. f is a convex function. If fi is α-strongly convex for every i, then f is α-strongly convex.

Proof. Convexity follows easily by considering λx+(1− λ)y where x,y ∈ ∏
∞
i=1RTi and λ ∈ (0,1). Indeed,

since each fi is convex we have f (λx+(1−λ)y)≤ λ f (x)+(1−λ) f (y), as desired.

To check strong convexity, it suffices to prove that the function g(x) := f (x)− α

2 ‖x‖
2 is convex. Let x =

(x(1),x(2), . . .) where x(i) ∈ RTi . Then,

g(x) =
∞

∑
i=1

[
1

C2
i

fi(Cix(i))−
α

2

∥∥∥x(i)
∥∥∥2
]

=
∞

∑
i=1

[
1

C2
i

(
fi(Cix(i))−

α

2

∥∥∥Cix(i)
∥∥∥2
)]

,

which is convex because fi− α

2 ‖·‖
2 is a convex function since fi is α-strongly convex. �

To prove the implications involving the subdifferentiability and Lipschitz-ness of f on X , we will require

a characterization of the subdifferential of f (Claim 5.17) which will also be useful in proving that running

Algorithm 1 on f is equivalent to running an instance of Algorithm 1 for each fi in parallel.

Claim 5.12. Let x = (x(1)/C1,x(2)/C2, . . .) ∈X (that is x(i) ∈Xi). Then, ∂ f (x) = ∏
∞
i=1

1
Ci

∂ fi(x(i))

Claim 5.12 immediately proves the following claim regarding the subdifferentiability of f on X and Lips-

chitzness is an easy consquence of Claim 5.12 and our assumptions.

Claim 5.13. Suppose for every i, for every x ∈Xi that ∂ fi(x) 6= /0. Then, ∂ f (x) 6= /0 for every x ∈X .

Claim 5.14. f is L-Lipschitz on X .

Proof. Let x = (x(1)/C1,x(2)/C2, . . .) ∈X . By Claim 5.12, we may write any g ∈ ∂ f (x) as

g =
(

g(1)/C1,g(2)/C2, . . .
)
,

where g(i) ∈ ∂ fi(x(i)). Hence,

‖g‖2 =
∞

∑
i=1

∥∥g(i)
∥∥2

C2
i
≤ L2

∞

∑
i=1

1
C2

i
≤ L2.

�

Next, we will use Claim 5.12 to prove that that running Algorithm 1 on f is equivalent to running an instance

of Algorithm 1 for each fi in parallel.

Claim 5.15. Let σi be a map such that for every x ∈ Xi, σi(x) ∈ ∂ fi(x). Let x(i)t denote the t-th iterate of

Algorithm 1 on the function fi, using the feasible region Xi, step sizes ηt , initial point x(i)1 and the subgradient

oracle σi. Then, there is a map σ such that for every x ∈X , σ(x) ∈ ∂ f (x) and the t-th iterate of gradient

descent on the function f using the feasible region X , step sizes ηt , initial point x1 = (x(1)1 /C1,x
(2)
1 /C2, . . .) and

the subgradient oracle σ is given by

xt =

(
x(1)t

C1
,
x(2)t

C2
, . . .

)
.

56

Proof. We begin by specifying σ . By Claim 5.12, the following definition of σ is valid:

σ

(
x(1)

C1
,
x(2)

C2
, . . .

)
=

(
1

C1
σ1(x(1)),

1
C2

σ2(x(2)), . . .
)
.

We proceed by induction, using the subgradient oracle σ . The base case is true by assumption, that is we

assumed x1 =

(
x(1)1
C1

,
x(2)1
C2

, . . .

)
. Now, suppose xt =

(
x(1)t
C1

, x(2)t
C2

, . . .

)
. Then,

yt+1 = xt −ηtσ(xt)

=

(
x(1)t

C1
,
x(2)t

C2
, . . .

)
−ηtσ

(
x(1)t

C1
,
x(2)t

C2
, . . .

)
(by induction hypothesis)

=

(
x(1)t

C1
,
x(2)t

C2

)
−ηt

(
1

C1
σ1(x

(1)
t),

1
C2

σ2(x
(2)
t), . . .

)
(by definition of σ)

=

(
1

C1

(
x(1)t −ηtσ1(x

(1)
t)
)
,

1
C2

(
x(2)t −ηtσ2(x

(2)
t)
)
, . . .

)
=

(
1

C1
y(1)t+1,

1
C2

y(2)t+1, . . .

)
.

Then, xt+1 = ΠX (yt+1). Now, we will apply Claim 5.16. To do so, we must check yt+1 ∈ `2. Indeed, the

following shows that this is true.

‖yt+1‖2 =
∞

∑
i=1

1
C2

i

∥∥∥x(i)t −ηtσi(x
(i))
t

∥∥∥2

≤
∞

∑
i=1

1
C2

i

(∥∥∥x(i)t

∥∥∥2
+
∥∥∥σi(x

(i)
t)
∥∥∥2

+2
∥∥∥x(i)t

∥∥∥∥∥∥σi(x
(i)
t)
∥∥∥) (by Cauchy-Schwarz)

=
∞

∑
i=1

1
C2

i

∥∥∥x(i)t

∥∥∥2
+

∞

∑
i=1

2
C2

i

∥∥∥x(i)t

∥∥∥∥∥∥σi(x
(i)
t)
∥∥∥+ ∞

∑
i=1

1
C2

i

∥∥∥σi(x
(i)
t)
∥∥∥2

(each series converges absolutely)

≤ R2
∞

∑
i=1

1
C2

i
+RL

∞

∑
i=1

2
C2

i
+L2

∞

∑
i=1

1
C2

i
(since Xi ⊂BTi(0,R) and fi is L Lipschitz)

< ∞ (because
∞

∑
i=1

1
C2

i
≤ 1)

Therefore, by Claim 5.16, because each Xi is closed and convex we may compute this by computing the

projection of 1
Ci

y(i)t+1 onto Xi/Ci and then concatenating the results. Recall that ΠXi(y
(i)
t+1) = x(i)t+1, by definition

57

of Algorithm 1. Hence, we have

ΠXi/Ci

(
1
Ci

y(i)t+1

)
= argmin

z∈Xi/Ci

∥∥∥∥z− 1
Ci

y(i)t+1

∥∥∥∥
=

1
Ci

argmin
z∈Xi

∥∥∥z− y(i)t+1

∥∥∥
=

1
Ci

ΠXi

(
y(i)t+1

)
=

1
Ci

x(i)t+1.

Hence, we have

xt+1 = ΠX (yt+1) =

(
ΠX1/C1

(
1

C1
y(1)t+1

)
,ΠX2/C2

(
1

C2
y(2)t+1

)
, . . .

)
=

(
x(1)t+1

C1
,
x(2)t+1

C2
, . . .

)
,

as desired. �

Claim 5.16. Let Y = ∏
∞
i=1 Yi where each Yi ⊆ RTi is a closed convex set. Let z =

(
z(1),z(2), . . .

)
∈ `2 where

z(i) ∈ RTi . Then, ΠY (z) =
(
ΠY1(z

(1)),ΠY2(z
(2)), . . .

)
.

Proof. Since ∏
∞
i=1 Yi is closed and convex, then by [38, Theorem 4.10] we have that ΠY (z) is achieved

by a unique element for z ∈ `2. Let ΠY (z) = (y(1),y(2), . . .) =: y where y(i) ∈ Yi. Suppose that for some i,

y(i) 6= ΠYi(z
(i)). Then, by the uniqueness of the projection onto a convex set, we have that

∥∥y(i)− z(i)
∥∥2

>∥∥ΠYi(z
(i))− z(i)

∥∥2
. Consider the point y′ := (y(1), . . .y(i−1),ΠYi(z

(i)),y(i+1), . . .) ∈ Y . We have

‖y− z‖2 =
∞

∑
j=1

∥∥∥y(j)− z(j)
∥∥∥2

> ∑
j 6=i

∥∥∥y(j)− z(j)
∥∥∥2

+
∥∥∥ΠYi(z

(i))− z(i)
∥∥∥2

=
∥∥y′− z

∥∥2
,

which contradicts the assumption that y = ΠY (z).

�

Next, we must check Claim 5.12.

Proof of Claim 5.12

The proof of Claim 5.12 depends on the following lemma.

Claim 5.17. Suppose h : `2 → R is such that h(y(1),y(2), . . .) = ∑
∞
n=1 hn(y(n)) where each hn : RTn → R is a

convex function. Assume h converges on some set Y ⊆ `2. Suppose that for every y = (y(1),y(2), . . .) ∈ Y with

y(n) ∈ RTn , we have that ∑
∞
n=1

∥∥g(n)
∥∥<+∞ for every g(n) ∈ ∂hn(y(n)). Then, for all y ∈X

∂h(y(1),y(2), . . .) = ∂h1(y(1))×∂h2(y(2))×

See Sub-subsection 5.1.2 for a proof. To prove Claim 5.12 we will apply Claim 5.17, which requires us to

check X ⊂ `2.

Claim 5.18. X ⊂ `2.

58

Proof. Let x = (x(1)/C1,x(2)/C2, . . .) ∈X .

‖x‖2 =
∞

∑
i=1

∥∥x(i)
∥∥2

C2
i
≤ R2

∞

∑
i=1

1
C2

i
≤ R2

because Xi ⊆BTi(0,R). �

Proof (of Claim 5.12). We will apply Claim 5.17 with hn =
1

C2
n

fn ◦CnIn where In is the n× n identity matrix,

Y = X = ∏
∞
n=1

1
Cn

Xn, and h = f = ∑
∞
n=1 fn. To do so, we must check

• Each fn is convex (which implies hn is convex),

• X = 1
Ci

∏
∞
i=1 Xi ⊂ `2,

• f is bounded everywhere on X (since f (x) is a sum of non-negative numbers, it converges if and only if

it is bounded),

• For every x(i) ∈Xi, g(i) ∈ ∂

(
1

C2
i

fi ◦CiITi

)
(x(i)/Ci), ∑

∞
i=1

∥∥g(i)
∥∥ < +∞, where ITi is the identity matrix in

Ti dimensions.

The first three points are handled by assumption, Claim 5.18 and Claim 5.10. It remains to check the fourth

point. By Claim A.9, ∂

(
1

C2
i

fi ◦CiITi

)
(x(i)/Ci) =

1
Ci

∂ fi(x(i)). Furthermore, because fi is L-Lipschitz, then every

subgradient of fi on Xi has norm at most L. Hence, for every g ∈ 1
Ci

∂ fi(x(i)), ‖g‖2 ≤ (L/Ci)
2. We have

∑
∞
i=1

L
Ci
≤ L, and therefore the fourth point holds.

Hence, applying Claim 5.17, we have for every x =
(
x(1)/C1,x(2)/C2, . . .

)
∈X , we have

∂ f (x(1)/C1,x(2)/C2, . . .) =
∞

∏
i=1

∂

(
1

C2
i

fi ◦CiITi

)(
x(i)

Ci

)
=

∞

∏
i=1

1
Ci

∂ fi(x(i)),

which completes the proof of the claim.

�

Proof of Claim 5.17

Claim 5.17. Suppose h : `2 → R is such that h(y(1),y(2), . . .) = ∑
∞
n=1 hn(y(n)) where each hn : RTn → R is a

convex function. Assume h converges on some set Y ⊆ `2. Suppose that for every y = (y(1),y(2), . . .) ∈ Y with

y(n) ∈ RTn , we have that ∑
∞
n=1

∥∥g(n)
∥∥<+∞ for every g(n) ∈ ∂hn(y(n)). Then, for all y ∈X

∂h(y(1),y(2), . . .) = ∂h1(y(1))×∂h2(y(2))×

Proof. Let y ∈Y . We write y as ⊕∞
n=1y(n) where y(n) ∈RTn denote the components of y. We have ∑

∞
n=1 hn(y(n))

converges by assumption.

First we show that ∂h1(y(1))× ∂h2(y(2))× . . . ⊆ ∂h(y(1),y(2), . . .). Let z = ⊕∞
n=1z(n) ∈ `2 be arbitrary. For

each n, suppose g(n) ∈ ∂hn(y(n)). Hence, for all z(n) ∈ RTn

hn(z(n))≥ hn(y(n))+(z(n)− y(n))Ty(n).

59

Therefore, summing this inequality over n, we have:

h(z) =
∞

∑
n=1

hn(z(n))

≥
∞

∑
n=1

[
hn(y(n))+(z(n)− y(n))Tg(n)

]

We may write ∑
∞
n=1

[
hn(y(n))+ (z(n)− y(n))Tg(n)

]
= ∑

∞
n=1 hn(y(n))+∑

∞
n=1(z

(n)− y(n))Tg(n) if both series on

the right hand side converge. Observe that ∑
∞
n=1 hn(y(n)) converges by assumption. We now show ∑

∞
n=1(z

(n)−
y(n))Tg(n) converges absolutely. Indeed,

∞

∑
n=1
|(z(n)− y(n))Tg(n)| ≤

∞

∑
n=1

∥∥∥z(n)− y(n)
∥∥∥∥∥∥g(n)

∥∥∥ (by Cauchy-Schwarz)

≤
∞

∑
n=1
‖z− y‖

∥∥∥g(n)
∥∥∥

= ‖z− y‖
∞

∑
n=1

∥∥∥g(n)
∥∥∥ (since x and y are in `2)

< +∞ (∑∞
n=1‖g(n)‖<+∞ by assumption) ,

as desired. Therefore,

h(z) ≥ h(y)+ 〈 z− y, g 〉,

where z = ⊕∞
n=1z(n), y = ⊕∞

n=1y(n), g = ⊕∞
n=1g(n). This demonstrates that ⊕∞

n=1g(n) ∈ ∂h(y(1),y(2), . . .), since

Z ∈ `2 was arbitrary.

Now, we prove ∂h(y(1),y(2), . . .)⊆ ∂h1(y(1))×∂h2(y(2))× Suppose g =⊕∞
n=1g(n) is a subgradient of h

at y ∈ Y . Since `2 is self-dual, then by Definition 5.4 the subgradients of h live in `2 and so g ∈ `2. We verify

that for every n, g(n) ∈ ∂hn(y(n)). Let z∈RTn be arbitrary and let ỹ = (y(1),y(2), . . . ,y(n−1),z,y(n+1), . . .). Observe

that ỹ ∈ `2 because y ∈ `2 and moreover notice that h(ỹ) converges since h(ỹ) differs from h(y) in only a single

summand and h(y) converges. Since g is a subgradient of h at y, we have

h(ỹ)−h(y) ≥ (ỹ− y)Tg

⇔
∞

∑
j=1

h j(ỹ(j))−
∞

∑
j=1

h j(y(j)) ≥
∞

∑
j=1

(ỹ(j)− y(j))Tg(j)

⇔
∞

∑
j=1

[
h j(ỹ(j))−h j(y(j))

]
≥

∞

∑
j=1

(ỹ(j)− y(j))Tg(j) (h(y) and h(ỹ) converge).

By definition of y we have

ỹ(j) =

y(j) if j 6= n,

z otherwise.

60

Therefore, h(ỹ)−h(y)≥ (ỹ− y)Tg is equivalent to

hn(z)−hn(y(n))≥ (z− y(n))Tg(n),

which is equivalent to saying that g(n) is a subgradient of hn at y(n) as desired. �

5.1.3 Proof of Claim 5.8

Recall the definition of the augmented version of fTi , fi = max
{

fTi(x),
1
2 ‖x‖

2
}

.The main idea of showing that

fi provides the same lower bound on the performance of Algorithm 1 as fTi itself is to show that under the

appropriate choice of subgradient oracle, running Algorithm 1 using fi is equivalent to running Algorithm 1

using fTi (at least for the first Ti +1 iterations) in the sense that both executions produce the same iterates.

Proof (of Claim 5.8). We begin by recalling the definition of the function fTi and its subgradient oracle:

Let BTi(0,1) be the Euclidean unit ball in RTi . Define f : BTi(0,1)→ R and h` ∈ RTi for ` ∈ [T +1] by

fTi(x) = max
`∈[T+1]

H`(x) where H`(x) = hT
` x+

1
2
‖x‖2

h`, j =

a j (if 1≤ j < `)

−1 (if `= j ≤ T)

0 (if ` < j ≤ T)

and a j =
1

2(T +1− j)
(for j ∈ [T]).

Recall the definition of the subgradient oracle for fTi from Section 2.1: Given a point x ∈BTi(0,1), define

σ ′i (x) = h`′+ x where `′ = minI (x) and I (x) = { ` : H`(x) = fTi(x) }. Define

σi(x) =

σ ′i (x) if ∂ fi(x)⊆ ∂ fTi(x),

arbitrary x ∈ ∂ fi(x) otherwise.

Recall that by Lemma 2.5 the t-th (for t = 1, . . . ,Ti +1) iterate produced by Algorithm 1 on fTi when using

step size ηt = 1/t and feasible region BTi(0,1) is given by the vector zt ∈ RTi which is strictly positive on

the first t− 1 coordinates and is zero on the remaining coordinates (by Claim 2.3). Therefore, the subgradient

oracles σi and σ ′i agree on the vectors z1, . . .zTi+1 because fi(zt) = max
{

fTi(zt),
1
2 ‖zt‖2

}
= fTi(zt) >

1
2 ‖zt‖2

(which implies ∂ fi(zt) = ∂ fTi(x)).

Since the instance of Algorithm 1 on fTi and the instance of Algorithm 1 on fi begin at the same starting point

and because the subgradient oracles for both algorithms agree on z1, . . . ,zTi+1 (which are the iterates produced

by the instance running on fTi), we have that the t-th iterate produced by Algorithm 1 when executed on fi is zt .

That is, x(i)t = zt for t ∈ [Ti +1]. Observe that

fi(x
(i)
Ti+1) = fi(zTi+1) = fTi(zTi+1) ≥

logTi

4Ti
,

where the final inequality is because fTi is the function which realizes the lower bound in Theorem 1.12. �

61

5.2 Necessity of log(1/δ)

In this section, we show that the error of the last iterate and suffix average of SGD in the strongly-convex setting

is Ω(log(1/δ)/T) with probability at least δ .

Lemma 5.19 ([24, Lemma 4]). Let X1, . . . ,XT be independent random variables taking value {−1,+1} uni-

formly at random and X = 1
T ∑

T
t=1 Xi. Then for any

√
6≤ c < 2

√
T ,

Pr
[

X ≥ c√
T

]
≥ exp(−9c2/2).

Consider the single-variable function f (x) = 1
2 x2 and suppose that the domain is X = [−1,1]. Then f is

1-strongly convex and 1-Lipschitz on X . Moreover, suppose that the subgradient oracle returns x− ẑ where ẑ

is −1 or +1 with probability 1/2 (independently from all previous calls to the oracle). Finally, suppose we run

Algorithm 1 with step sizes ηt = 1/t with an initial point x1 = 0.

Claim 5.20. Let
√

6≤
√

2
9 log(1/δ)≤ 2

√
T . Then f (xT+1)≥ 1

9
log(1/δ)

T with probability at least δ .

Proof. We claim that xt+1 =
1
t ∑

t
i=1 ẑi for all t ∈ [T] where ẑi is the random sign returned by the subgradient

oracle at iteration i. Indeed, for t = 1, we have y2 = x1− η1(x1− ẑ1) = ẑ1 since η1 = 1. Moreover, x2 =

ΠX (y2) = y2 since |y2| ≤ 1. Now, suppose that xt =
1

t−1 ∑
t−1
i=1 ẑi. Then yt+1 = xt −ηt(xt − ẑt) =

1
t ∑

t
i=1 ẑi. Since

|yt+1| ≤ 1, we have xt+1 = yt+1.

Hence, by Lemma 5.19 with c =
√

2
9 log(1/δ), we have xT+1 ≥

√
2
9 log(1/δ)/

√
T with probability at least

δ (provided T ≥ 1
18 log(1/δ)). We conclude that f (xT+1)≥ log(1/δ)

9T with probability at least Ω(δ). �

We can also show that Theorem 1.17 is tight. To make the calculations simpler, first assume T is a multiple

of 4. We further assume that the noise introduced by the stochastic subgradient oracle is generated as follows.

For 1≤ t < T/2 and t > 3T/4, ẑt = 0. For T/2≤ t ≤ 3T/4, first define At = ∑
T
i=t

1
i . Then we set ẑt to be ± 1

4At

with probability 1/2. Note that At ≥ 1/4 for T/2≤ t ≤ 3T/4 so we still have |ẑt | ≤ 1 for all t.

Claim 5.21. Let
√

6 ≥
√

2
9 log(1/δ) ≤ 2

√
T . Then f

(
1

T/2+1 ∑
T+1
t=T/2+1 xt

)
≥ Ω

(
log(1/δ)

T

)
with probability at

least δ .

Proof. Proceeding as in the above claim, we have xt+1 =
1
t ∑

t
i=1 ẑi. We claim that

1
T/2+1

T+1

∑
t=T/2+1

xt =
1

T/2+1

3T/4

∑
t=T/2

At ẑt . (5.7)

To see this, we have

1
T/2+1

T

∑
t=T/2

xt+1 =
1

T/2+1

T

∑
t=T/2

1
t

t

∑
i=1

ẑi

=
1

T/2+1

T

∑
i=1

ẑi

T

∑
t=max{i,T/2}

1
t

=
1

T/2+1

3T/4

∑
t=T/2

At ẑt ,

62

where the last equality uses the assumption that ẑt 6= 0 only if T/2 ≤ t ≤ 3T/4 and changes the name of the

index. Notice that At ẑt is ±1
4 with probability 1/2 so we can write Eq. (5.7) as

1
4(T/2+1)

T/4+1

∑
t=1

Xt

where Xt are random signs. Applying Lemma 5.19 with c =
√

log(1/δ), we conclude that Eq. (5.7) is at least

Ω(
√

log(1/δ)/
√

T) with probability at least δ . So we conclude that f
(

1
T/2+1 ∑

T+1
t=T/2+1 xt

)
≥Ω

(
log(1/δ)

T

)
with

probability at least δ . �

63

Chapter 6

Extensions and Generalizations

6.1 Generalizations
In this section, we discuss generalizations of our results. In Subsection 6.1.1, we explain that the scaling of the

function (e.g., Lipschitzness) can be normalized without loss of generality. In Subsection 6.1.2, we state some

results which demonstrate that the assumption of almost surely bounded noise can be relaxed to subgaussian

noise in our upper bounds (Theorems 1.9, 1.10 and 1.17). The proofs of these results can be found in Section 6.3.

6.1.1 Scaling assumptions

For most of this thesis we consider only convex functions that have been appropriately normalized, due to the

following facts.

• Strongly convex case. The case of an α-strongly convex and L-Lipschitz function can be reduced to the

case of a 1-strongly convex and 1-Lipschitz function.

• Lipschitz case. The case of an L-Lipschitz function on a domain of diameter R can be reduced to the case

of a 1-Lipschitz function on a domain of diameter 1.

We will discuss only the first of these in detail. The second is proven with similar ideas and so we only sketch

the proof.

Strongly convex setting

Theorem 6.1. Suppose f is α-strongly convex and L-Lipschitz, and that ẑt has norm at most L almost surely.

Consider running Algorithm 1 for T iterations with step size ηt =
1

αt . Let x∗ = argminx∈X f (x). Then, with

probability at least 1−δ ,

f (xT+1)− f (x∗) ≤ O
(

L2

α

log(T) log(1/δ)

T

)
.

Theorem 6.2. Suppose f is α-strongly convex and L-Lipschitz, and that ẑt has norm at most L almost surely.

Consider running Algorithm 1 for T iterations with step size ηt =
1

αt . Let x∗ = argminx∈X f (x). Then, with

64

probability at least 1−δ ,

f
(

1
T/2+1

T

∑
t=T/2

xt

)
− f (x∗) ≤ O

(
L2

α

log(1/δ)

T

)
.

We prove these theorems by reduction to Theorem 1.9 and Theorem 1.17, respectively. That is, suppose that

f is a function that has strong convexity parameter α and Lipschitz parameter L. We construct a function h that

is 1-Lipschitz and 1-strongly convex (using Claim 6.3) and a subgradient oracle such that running SGD on h

with this subgradient oracle is equivalent to running SGD on f . Formally, we prove the following two claims:

Claim 6.3. Let f be an α-strongly convex and L-Lipschitz function. Then, h(x) := α

L2 f (L
α

x) is 1-Lipschitz and

1-strongly convex.

Claim 6.4. Suppose f is α-strongly convex and L-Lipschitz on a domain X ⊂Rn. Let the initial point x1 ∈X

be given. Let h be as defined in Claim 6.3. Then, there is a coupling between the following two processes:

• the execution of Algorithm 1 on input f with initial point x1, step size ηt = 1/(αt) and feasible region X

• the execution of Algorithm 1 on input h with initial point x̃1 := (α/L)x1, step size η̃t = 1/t and feasible

region (α/L)X

such that the iterates of the second process correspond to the iterates of the first process scaled by α/L. That is,

if we denote by x̃t the iterates of the execution of SGD using h and xt for the execution on f , then x̃t = (α/L)xt .

Theorem 6.1 and Theorem 6.2 follow easily now. We prove Theorem 6.1 by reducing to Theorem 1.9. The

proof of Theorem 6.2 can be obtained by reducing similarly to Theorem 1.17.

Proof (of Theorem 6.1). Suppose f is α strongly-convex and L-Lipschitz and let X be the feasible region. Let

h(x)= α

L2 f
(L

α
x
)
. By Claim 6.3, h is a 1 strongly-convex and 1-Lipschitz function. Note that minx∈(α/L)X h(x)=

α

L2 minx∈X f (x). Using the coupling provided in Claim 6.4, let xt be the iterates of produced by running SGD

when using f over the region X and x̃t be the iterates of SGD when using h over the region (α/L)X . Claim 6.4

shows that x̃t = (α/L)xt . Therefore, we have

h(x̃T+1)− min
x∈(α/L)X

h(x) =
α

L2

(
f (xT+1)−min

x∈X
f (x)

)
.

Hence, applying Theorem 1.9, we have our desired result by noting that

h(x̃T+1)− min
x∈(α/L)X

h(x) = O
(

log(T) log(1/δ)

T

)
with probability 1−δ .

�

Now it remains to prove Claim 6.4 and Claim 6.3

Proof (of Claim 6.4). The coupling is given by constraining the algorithms to run in parallel and enforcing the

execution of SGD on h to use a scaled version of the outputs of the subgradient oracle used by the execution

of SGD on f . That is, at step t, if ĝt is the output of the subgradient oracle of the execution of SGD on f

(i.e. E [ĝt] ∈ ∂ f (xt)), then we set the output of the subgradient oracle of the execution of SGD on h at step t to

be 1
L ĝt .

65

The subgradient oracle for h is valid if x̃t = (α/L)xt . Indeed, ∂h(x) = 1
L f
(L

α
x
)

by Claim A.9. Therefore,

∂h((α/L)xt) =
1
L ∂ f (xt). Since E [ĝt] ∈ ∂ f (xt) then E [(1/L)ĝt] ∈ ∂h((α/L)xt). Next, we prove via induction

that x̃t = (α/L)xt .

By definition, x̃1 = (α/L)x1, which handles the base case. Now, assume x̃t = (α/L)xt . Let ĝt be the

output of the subgradient oracle for SGD running on f . The subdifferential for h at x̃t is 1
L ∂ f (xt). Therefore,

the subgradient oracle for h is valid at this step. Now, yt+1 = xt − 1
αt ĝt . Meanwhile, ỹt+1 = x̃t − 1

t
1
L ĝt =

α

L (xt − 1
αt g̃t) =

α

L yt+1. Therefore,

x̃t+1 = Π(α/L)X (ỹt+1) = Π(α/L)X (yt+1(α/L)) = (α/L)ΠX (yt+1) = (α/L)xt+1

as desired. �

Proof (of Claim 6.3). First we show that h is 1-Lipschitz:

|h(x)−h(y)| = α

L2

∣∣∣∣ f(L
α

x
)
− f
(

L
α

y
)∣∣∣∣ ≤ α

L2 L
∥∥∥∥ L

α
(x− y)

∥∥∥∥ = ‖x− y‖ .

The inequality holds since f is L-Lipschitz.

Now we show that h is 1-strongly convex. A function g is α strongly convex, if and only if the function

x 7→ g(x)− α

2 ‖x‖
2 is convex. Indeed, for h:

h(x)− 1
2
‖x‖2 =

α

L2 f
(

L
α

x
)
− 1

2
‖x‖2 =

α

L2

(
f
(

L
α

x
)
− L2

2α
‖x‖2

)
=

α

L2

(
f
(

L
α

x
)
− α

2

∥∥∥∥ L
α

x
∥∥∥∥2)

.

The function on the right is convex because f is α-strongly convex. This implies that x 7→ h(x)− 1
2 ‖x‖

2 is

convex, meaning that h is 1-strongly convex. �

Lipschitz setting

Theorem 6.5. Suppose f is an L-Lipschitz function on X and that ẑt has norm at most L almost surely. Consider

running Algorithm 1 for T iterations with step size ηt =
R

L
√

t . Let f ∗ = minX f (x).Then, with probability at least

1−δ ,

f (xT+1)− f ∗ = O
(

RL · log(T) log(1/δ)√
T

)
.

Theorem 6.5 can be proved by a reduction to Theorem 1.10, similarl to the strongly-convex setting. We do

not provide proofs, as the ideas are similar to the strongly-convex setting and can be easily adapted to prove the

results in this setting. The main claims are as follows.

Claim 6.6. Let f be an L-Lipschitz function on X . Then, h(x) := 1
RL f (Rx) is 1-Lipschitz on (1/R)X and

minx∈(1/R)X h(x) = 1
RL minx∈X f (x). Note that diam(X)≤ 1.

Claim 6.7. Suppose f is L-Lipschitz on a domain X ⊂ Rn. Let the initial point x1 ∈X be given. Let h be as

defined in Claim 6.6. Then, there is a coupling between the following two processes:

• the execution of Algorithm 1 on input h with initial point x̃1 := (1/R)x1, step size η̃t and feasible region

(1/R)X , and

66

• the execution of Algorithm 1 on input f with initial point x1, step size ηt =
R
L η̃t and feasible region X

such that the iterates of the first process correspond to the iterates of the second process scaled by 1
R . That is, if

we denote by x̃t the iterates of the execution of SGD using h and xt for the execution on f , then x̃t = (1/R)xt .

6.1.2 Subgaussian noise

Theorems 1.9 and 1.10 assume that the stochastic gradient oracle produces noise at each step that almost surely

has Euclidean norm at most 1. It is possible to relax this assumption to include stochastic gradient oracles

which allow unbounded noise as long as the norm of the noise is sufficiently “concentrated” around some

constant. The notion of concentration which we use is subgaussian-ness. For example, normally distributed

random variables are subgaussian. See Section 6.2 for a formal introduction to subgaussian random variables.

Below we informally state our high probability upper bounds generalized to handle subgaussian noise. We will

prove a formal version of Theorem 6.8 in Section 6.3. A formal version of Theorem 6.9 can be obtained by

applying similar modifications to the proof of Theorem 6.9 as was done to the proof of Theorem 1.9 to obtain

Theorem 6.8.

Theorem 6.8 (Informal subgaussian extension, strongly convex case). Suppose f is 1-strongly convex and 1-

Lipschitz. Assume ‖ẑt‖ is a subgaussian random variable conditioned on Ft−1. Consider running Algorithm 1

for T iterations with step size ηt = 1/t. Let x∗ = argminx∈X f (x). Then, with probability at least 1−δ ,

f (xT+1)− f (x∗) ≤ O
(

log(T) log(1/δ)

T

)
.

Theorem 6.9 (Informal subgaussian extension, Lipschitz case). Suppose f is 1-Lipschitz and diam(X) ≤ 1.

Assume ‖ẑt‖ is a subgaussian random variable conditioned on Ft−1. Consider running Algorithm 1 for T

iterations with step size ηt = 1/
√

t. Let f ∗ = minx∈X f (x). Then, with probability at least 1−δ ,

f (xT+1)− f (x∗) ≤ O
(

log(T) log(1/δ)√
T

)
.

Remark 6.10. Theorem 6.8 and Theorem 6.9 can be extended to handle functions with arbitrary Lipschitz and

strong convexity constants using the reductions from Subsection 6.1.1.

6.2 Subgaussian and subexponential random variables
In this section, we go over some basic preliminaries on subgaussian and subexponential random variables; the

reader is referred to the book by Vershynin [45, Chapter 2] for further background. The results stated here

will be useful in Section 6.3 where we extend our high probability convergence by relaxing the bounded noise

assumption.

6.2.1 Subgaussian random variables

Definition 6.11 (Subgaussian random variable).

67

• For a random variable X, define

‖X‖
ψ2

= inf
{

t > 0 : E
[

exp
(
X2/t2)]≤ 2

}
.

We call X subgaussian if ‖X‖
ψ2

is finite.

• For a random variable X and a sigma-algebra F , define

‖X |F‖
ψ2

= inf
{

t > 0 : E
[

exp
(
X2/t2) | F]

≤ 2
}
.

We call X subgaussian conditioned on F if ‖X |F‖
ψ2

is finite.

Fact 6.12. ‖·‖
ψ2

is a norm. It is refered to as the ψ2-norm.

Claim 6.13. Let X be a subgaussian random variable. Then E
[

exp
(

X2/‖X‖2
ψ2

)]
≤ 2.

Proof. Let S =
{

t > 0 : E
[

exp
(
X2/t2

)]
≤ 2

}
. For every ε > 0, we have that ‖X‖

ψ2
+ ε > t for some t ∈ S.

Hence,

E
[

exp
(

X2/(‖X‖
ψ2

+ ε)2
)]

< E
[

exp
(
X2/t2)]≤ 2.

Therefore, for every ε > 0 we have E
[

exp
(

X2/(‖X‖
ψ2

+ ε)2
)]

< 2. Taking ε→ 0 and applying the monotone

convergence theorem completes the proof. �

Claim 6.14. Let X be a subgaussian random variable. Then E
[

exp
(
λ 2X2

)]
≤ exp

(
λ 2 ‖X‖2

ψ2

)
for all |λ | ≤

1/‖X‖
ψ2

.

Proof. Suppose |λ | ≤ 1
‖X‖

ψ2
, which implies that the function x 7→ xλ 2‖X‖2

ψ2 is concave. Hence,

E
[

exp
(
λ

2X2)] = E
[

exp
(

λ
2 ‖X‖2

ψ2
X2/‖X‖2

ψ2

)]
≤ E

[
exp
(

X2/‖X‖2
ψ2

)]λ 2‖X‖2
ψ2 (by Jensen’s inequality)

≤ 2λ 2‖X‖2
ψ2 (by Claim 6.13)

≤ exp
(

λ
2 ‖X‖2

ψ2

)
.

�

Claim 6.15. Suppose that E
[

exp
(
λ 2X2

)]
≤ exp

(
λ 2κ2

)
for all |λ | ≤ 1/κ . Then ‖X‖

ψ2
≤ κ/

√
ln2.

Proof. Let λ̃ =
√

ln2/κ ≤ 1/κ . By Claim 6.14,

E
[

exp
(
(ln2)X2/κ

2)] = E
[

exp
(

λ̃
2X2
)]
≤ exp

(
λ̃

2
κ

2
)

= 2.

Hence, by Definition 6.11, we have ‖X‖
ψ2
≤ κ/

√
ln2. �

The combination of Claim 6.15 and Claim 6.14 establishes that the two properties E
[

exp
(
X2/t

)]
≤ 2 and

E
[

exp
(
λ 2X2

)]
≤ exp

(
λ 2t2

)
for all |λ | ≤ 1/t are “equivalent”. That is, if a random variable satisfies one of

68

the properties with value t, then it satisfies the other property with value t ′ which differs from t only by some

constant factor independent of the random variable X .

Claim 6.16 (‖·‖
ψ2

bound to tail bound). Suppose ‖X‖
ψ2
≤ κ . Then,

Pr
[

X ≤ κ
√

log(e/δ)
]
≥ 1−δ ∀δ ∈ (0,1].

Proof. By the exponentiated Markov inequality

Pr [X ≥ t] ≤ exp(−λ
2t2)E

[
exp
(
λ

2X2)] ≤ exp
(
−λ

2t2 +λ
2
κ

2) (for all |λ | ≤ 1/κ),

where the second inequality uses Claim 6.14. Setting λ = 1/κ and t = κ
√

log(e/δ) completes the proof. �

The following Claim is an extension of the well known Hoeffding’s Lemma (Lemma A.5) from bounded

random variables to subgaussian random variables.

Claim 6.17. Suppose X is mean-zero such that ‖X‖
ψ2
≤ κ . Then E [exp(λX)]≤ exp

(
λ 2κ2

)
for all λ ∈ R.

Proof. Claim 6.14 implies that E
[

exp
(
λ 2X2

)]
≤ exp

(
λ 2κ2

)
for all |λ | ≤ 1

κ
. Hence, the result follows from

Claim A.6. �

6.2.2 Subexponential random variables

Definition 6.18 (Subexponential random variable).

• For a random variable X, define

‖X‖
ψ1

= inf{ t > 0 : E [exp(|X |/t)]≤ 2 } .

We call X subexponential if ‖X‖
ψ1

is finite.

• For a random variable X and a sigma-algebra F , define

‖X |F‖
ψ1

= inf{ t > 0 : E [exp(|X |/t) | F]≤ 2 } .

We call X subexponential conditioned on F if ‖X |F‖
ψ1

is finite.

Fact 6.19. ‖·‖
ψ1

is a norm. It is referred to as the ψ1-norm.

Claim 6.20. Let X be a subexponential random variable. Then E
[

exp
(

X/‖X‖
ψ1

)]
≤ 2.

Proof. Let S = { t > 0 : E [exp(|X |/t)]≤ 2 }. For every ε > 0, we have that ‖X‖
ψ1

+ ε > t for some t ∈ S.

Hence,

E
[

exp
(
|X |/(‖X‖

ψ1
+ ε)

)]
< E [exp(|X |/t)]≤ 2.

Therefore, for every ε > 0 we have E
[

exp
(
|X |/(‖X‖

ψ1
+ ε)

)]
< 2. Taking ε→ 0 and applying the monotone

convergence theorem completes the proof. �

69

Claim 6.21. Let X be a subexponential random variable. Then E [exp(λ |X |)] ≤ exp
(

λ ‖X‖
ψ1

)
for all λ ∈

[0,1/‖X‖
ψ1
].

Proof. Suppose λ ∈ [0,1/‖X‖
ψ1
], which implies that the function x 7→ xλ‖X‖

ψ1 is concave. Hence,

E [exp(λ |X |)] = E
[

exp
(

λ ‖X‖
ψ1
|X |/‖X‖

ψ1

)]
≤ E

[
exp
(
|X |/‖X‖

ψ1

)]λ‖X‖
ψ1 (by Jensen’s inequality)

≤ 2λ‖X‖
ψ1 (by Claim 6.20)

≤ exp
(

λ ‖X‖
ψ1

)
.

�

Claim 6.22. Suppose that E [exp(λ |X |)]≤ exp(λκ) for all λ ∈ [0,1/κ]. Then ‖X‖
ψ1
≤ κ/(ln2).

Proof. Let λ̃ = (ln2)/κ, so clearly λ̃ ∈ [0,1/κ]. By Claim 6.21,

E [exp(ln2 |X |/κ)] = E
[

exp
(

λ̃ |X |
)]
≤ exp

(
λ̃κ

)
= 2.

Hence, by Definition 6.18, we have ‖X‖
ψ1
≤ κ/(ln2). �

The combination of Claim 6.22 and Claim 6.21 establishes that the two properties E [exp(|X |/t)] ≤ 2 and

E [exp(λ |X |)] ≤ exp(λ t) for all |λ | ≤ 1/t are “equivalent”. That is, if a random variable satisfies one of the

properties with value t, then it satisfies the other property with value t ′ which differs from t only by some

constant factor independent of the random variable X .

Claim 6.23 (‖·‖
ψ1

bound to tail bound). Suppose ‖X‖
ψ1
≤ κ . Then, for every δ ∈ (0,1), X ≤ κ log(e/δ) with

probability at least 1−δ .

Proof. By the exponentiated Markov inequality,

Pr [X ≥ t] ≤ exp(−λ t)E [exp(λX)] ≤ exp(−λ t +λκ) (for all λ ∈ (0,1/κ]),

where the second inequality follows from Claim 6.21. Setting λ = 1/κ and t = κ log(e/δ) completes the

proof. �

6.2.3 Relationship between subgaussian and subexponential random variables

Subgaussian and subexponential random variables share a simple connection, as hilighted by the result below.

Claim 6.24. Suppose X is a subgaussian random variable. Then, X2 is subexponential with
∥∥X2

∥∥
ψ1

= ‖X‖2
ψ2

Proof. This is easy to see by comparing the definition of each norm:

∥∥X2∥∥
ψ1

= inf
{

t > 0 : E
[

exp
(
X2/t

)]
≤ 2

}︸ ︷︷ ︸
:=A

,

70

‖X‖
ψ2

= inf
{

t > 0 : E
[

exp
(
X2/t2)]≤ 2

}︸ ︷︷ ︸
:=B

.

Clearly,
{

b2 : b ∈ B
}
= A. Hence,

∥∥X2∥∥
ψ1

= infA = (infB)2 = ‖X‖2
ψ2
,

as desired. �

6.3 Upper bound on error of final iterate: subgaussian noise
Theorems 1.9 and 1.10 assume that the stochastic gradient oracle produces noise at each step that almost surely

has Euclidean norm at most 1. In this section, we work with the weaker assumption that the noise at each step

is conditionally subgaussian. (A formal definition of this term appears in Section 6.2.)

As before, we will write ĝt = gt− ẑt , where ĝt is the vector returned by the oracle at the point xt , gt ∈ ∂ f (xt),

and ẑt is the noise. Let Ft = σ(ẑ1, . . . , ẑt) be the σ -algebra generated by the first t steps of SGD. Finally, recall

that E [ẑt | Ft−1] = 0. Instead of assuming that ‖ẑt‖≤ 1 almost surely, we will assume that ‖ẑt‖ is a subgaussian

random variable conditioned on Ft−1.

We will prove an extension of Theorem 1.9 in the following subsection (see Theorem 6.25). A similar

extension for Theorem 1.10 can also be obtained, however its proof is omitted since it relies mainly on the ideas

introduced in the next section.

6.3.1 Upper bound on error of final iterate, strongly convex case with subgaussian noise

The goal of this subsection is to prove Theorem 6.25. The analysis will reuse many claims from the analysis of

Theorem 1.9 and follow the general approach taken there as well.

Assumptions. The main difference between Theorem 6.25 and Theorem 1.9 is the assumption on the noise

produced by the stochastic gradient oracle. In this subsection, we assume ‖‖ẑt‖2 |Ft−1‖ψ2
≤ κ for every t.

Theorem 6.25. Suppose f is 1-strongly convex and 1-Lipschitz. Suppose that ‖‖ẑt‖ |Ft−1‖ψ2
≤ κ for all t.

Consider running Algorithm 1 for T iterations with step size ηt = 1/t. Let x∗ = argminx∈X f (x). Then, with

probability at least 1−δ ,

f (xT+1)− f (x∗) ≤ O
(
(κ +1)2 log(T) log(1/δ)

T

)
.

One important result that we need is a bound on
∥∥∥‖ĝt‖2

∥∥∥
ψ1

. In Section 3.1, this was not necessary, since

‖ĝt‖2 was almost-surely bounded by 4. This made for a clean analysis. Here, ‖ĝt‖2 can potentially be un-

bounded, and therefore we need to provide control on it’s tail distribution. Indeed, this is accomplished by the

following claim.

Claim 6.26. For every t, ‖‖ĝt‖ |Ft−1‖ψ2
= O(κ +1). Therefore,

∥∥∥‖ĝt‖2 |Ft−1

∥∥∥
ψ1

= O
(
(κ +1)2

)
. This

implies
∥∥∥‖ĝt‖2

∥∥∥
ψ1

= O
(
(κ +1)2

)
.

71

Proof. Recall, ĝt = gt− ẑt where gt ∈ ∂ f (xt) and ẑt is mean-zero conditioned on Ft−1 such that ‖‖ẑt‖ |Ft−1‖ψ2
≤

κ. Now, because ‖·‖
ψ1

is a norm, we have

‖‖ĝt‖ |Ft−1‖ψ2
≤ ‖‖gt‖+‖ẑt‖ |Ft−1‖ψ2

≤ ‖‖gt‖ |Ft−1‖ψ2
+‖‖ẑt‖ |Ft−1‖ψ2

≤ κ +1/
√

ln2.

We have used that ‖‖gt‖ |Ft−1‖ψ2
≤‖1 |Ft−1‖ψ2

by 1-Lipschitzness of f . By definition, we have ‖1 |Ft−1‖ψ2
≤

1/
√

ln2. Lastly, we have used the assumption that ‖‖ẑt‖ |Ft−1‖ψ2
≤ κ. �

Lemma 6.27. Let f be 1-strongly convex and 1-Lipschitz. Suppose that we run SGD (Algorithm 1) with step

sizes ηt = 1/t and that ‖ẑt |Ft−1‖ψ2
≤ κ. Then

f (xt) ≤
1

T/2+1

T

∑
t=T/2

f (xt)︸ ︷︷ ︸
suffix average

+
T/2

∑
k=1

1
k(k+1)

T

∑
t=T−k

〈 ẑt , xt − xT−k 〉︸ ︷︷ ︸
ZT , the noise term

+X ,

where X is a random variable such that ‖X‖
ψ1

= O
(
(κ +1)2 logT

T 2

)
.

Proof. We may proceed just as in the proof of Lemma 3.1. Applying Eq. (3.4), we obtain

f (xT) ≤ ST/2 +
T/2

∑
k=1

1
2k(k+1)

T

∑
t=T−k

ηt ‖ĝt‖2 +
T/2

∑
k=1

1
k(k+1)

T

∑
t=T−k

〈 ẑt , xt − xT−k 〉,

where ST/2 =
1

T/2+1 ∑
T
t=T/2 f (xt). From this point, the only difference is analyzing the following sum:

T/2

∑
k=1

1
2k(k+1)

T

∑
t=T−k

ηt ‖ĝt‖2 ,

because we cannot bound ‖ĝt‖2 as was done in the proof of Lemma 3.1. Instead, we may bound it’s ψ1-norm

using the fact that
∥∥∥‖ĝt‖2

∥∥∥
ψ1

= O
(
(κ +1)2

)
(Claim 6.26) and the triangle inequality for ‖·‖

ψ1
. This yields:

∥∥∥∥∥T/2

∑
k=1

1
2k(k+1)

T

∑
t=T−k

ηt ‖ĝt‖2

∥∥∥∥∥
ψ1

≤ O
(
(κ +1)2 logT

T

)
,

as desired. �

Since ‖X‖
ψ1
≤O

(
(κ +1)2 logT

T

)
, we have that by Claim 6.23, X ≤O

(
(κ +1)2 logT

T log(1/δ)
)

, with prob-

ability at least 1− δ . The suffix average is bounded by O
(
(κ +1)2 log(1/δ)

T

)
by Theorem 6.37 (we defer the

proof to Subsection 6.3.3). Therefore, it remains to analyze ZT . By changing the order of summation, we can

write ZT = ∑
T
t=T/2〈 ẑt , wt 〉 where

wt =
t

∑
j=T/2

α j(xt − x j) and α j =
1

(T − j)(T − j+1)
.

We will prove the following lemma, whose proof is outlined in Sub-subsection 6.3.1.

72

Lemma 6.28. ZT = O
(

κ (κ +1) logT log(1/δ)
T

)
with probability at least 1−δ .

Theorem 6.25 follows from Theorem 6.37, Lemma 6.28 and Lemma 6.27.

Bounding the noise

The main idea is to follow the steps in Subsection 3.1.1. However, certain steps will require a slightly different

analysis due to the absence of a bound on ‖ĝt‖2. Lemma 3.3 still holds in the subgaussian noise case. We restate

it here:

Lemma 3.3. Suppose f is 1-Lipschitz and 1-strongly convex. Suppose we run Algorithm 1 for T iterations

with step sizes ηt = 1/t. Let a < b. Then,

‖xa− xb‖2 ≤
b−1

∑
i=a

‖ĝi‖2

i2
+2

b−1

∑
i=a

(
f (xa)− f (xi)

)
i

+2
b−1

∑
i=a

〈 ẑi, xi− xa 〉
i

.

However, we prove a slight variant of Lemma 3.4.

Lemma 6.29. There exists positive values R = O
(

logT
T

)
, Ct = Θ(log(T − t)) , At = O

(
logT
T 2

)
and a non-

negative random variable X with ‖X‖
ψ1

= O
(
(κ+1)2 log2(T)

T 2

)
such that

T

∑
t=T/2

‖wt‖2 ≤ X +R
∥∥xT/2− x∗

∥∥2
+

T−1

∑
t=T/2

〈 ẑt ,
Ct

t
wt 〉+

T−1

∑
t=T/2

〈 ẑt , At(xt − x∗) 〉.

Proof. We may follow the proof of Lemma 3.4 from Subsection 3.3.4, with some minor differences. Here we

will only provide a brief outline of the differences.

We redefine Λ1 as follows, while keeping the definition of Λ2 and Λ3 as in the proof of Lemma 3.4.

Λ1 :=
T

∑
t=T/2

1
T − t +1

t−1

∑
j=T/2

α j

j−1

∑
i= j

‖ĝi‖2

i2
.

Recall, ∑
T
t=T/2 ‖wt‖2 ≤ Λ1 +Λ2 +Λ3, just as in Subsection 3.3.4.

Using the triangle inequality and the ψ1 norm bound on ‖ĝi‖2 from Claim 6.26, we may replace Claim 3.17

with

Claim 6.30. ‖Λ1‖ψ1
= O

(
(κ +1)2 log2(T)

T 2

)
.

We may keep Claim 3.19 as our bound on Λ3:

Claim 3.19.

Λ3 =
T−1

∑
i=T/2

〈 ẑi,
Ci

i
wi 〉,

where Ci := ∑
T
`=i+1

2
T−i+1 = O

(
log(T)

)
.

It remains to bound Λ2. We provide a slight variant of Claim 3.18:

73

Claim 6.31. There exists positive values R1, R2 such that R1 = O
(

logT
T

)
and R2 = O

(
logT
T 2

)
and a non-negative

random variable, X, such that ‖X‖
ψ1

= O
(
(κ+1)2 log(T)

T 2

)
, where

Λ2 ≤ X +R1
∥∥xT/2− x∗

∥∥2
+R2

T−1

∑
t=T/2

〈 ẑt , xt − x∗ 〉.

Proof. We may follow the proof of Claim 3.18 (found in Subsection 3.3.5) up to Eq. (3.5). At this stage, we

may continue the proof without bounding ‖ĝt‖2 , and instead collect these terms to obtain:

Λ2 ≤ O
(

logT
T 2

) T−1

∑
t=T/2

1
t
‖ĝt‖2 +O

(
logT

T

)∥∥xT/2− x∗
∥∥2

+O
(

logT
T 2

) T−1

∑
t=T/2

〈 ẑt , xt − x∗ 〉.

At this step, we can take X = O
(

logT
T 2

)
∑

T−1
t=T/2

1
t ‖ĝt‖2. It’s ψ1-norm is bounded as desired by using Claim 6.26

and the triangle inequality for the ψ1-norm. �

Lemma 6.29 follows from Claim 6.30, Claim 6.31, and Claim 3.19. �

Just as in Section 3.1, we will use Theorem 1.11. A snag is that our Lemma 6.29 does not quite bound the

SSCM of ZT by a linear transformation of ZT . However, Lemma 6.33 refines Lemma 6.29 so that we may use

Theorem 1.11 (similar to how Lemma 3.6 refines Lemma 3.4) . The proof of Lemma 6.33 uses the following

analog of Theorem 3.5 (see Subsection 6.3.2 for a proof).

Theorem 6.32. Both of the following hold:

• For all t ≥ 2, ‖xt − x∗‖2 = O
(
(κ +1)2 log(1/δ)/t

)
with probability 1−δ , and

• Let σt ≥ 0 for t = 2, . . . ,T . Then,∑T
t=1 σt ‖xt − x∗‖2 = O

(
(κ +1)2 log(1/δ)∑

T
t=2

σt
t

)
with probability

1−δ .

Lemma 6.33. For every δ ∈ (0,1), there exists positive values R=
(
(κ +1)2 log2(T) log(1/δ)

T 2

)
, and Ct =O(logT)

such that ∑
T
t=T/2 ‖wt‖2 ≤ R+∑

T−1
t=T/2

Ct
t 〈 ẑt , wt 〉 with probability at least 1−δ .

Proof.
From Lemma 6.29, we have

T

∑
t=T/2

‖wt‖2 ≤ X +R′
∥∥xT/2− x∗

∥∥2
+

T−1

∑
t=T/2

〈 ẑt ,
Ct

t
wt 〉+

T−1

∑
t=T/2

〈 ẑt , At (xt − x∗) 〉,

where X ,R′,At ,Ct are as promised by Lemma 6.29. Because ‖X‖
ψ1

= O
(
(κ+1)2 logT

T 2

)
, then by Claim 6.23, we

have X = O
(
(κ +1)2 logT log(1/δ)

T 2

)
, with probability at least 1−δ .

Furthermore, Theorem 6.32 states that
∥∥xT/2− x∗

∥∥2
= O

(
(κ+1)2 log(1/δ)

T

)
with probability at least 1− δ .

Hence, R′
∥∥xT/2− x∗

∥∥2
= O

(
(κ +1)2 log(1/δ) log(T)

T 2

)
with probability at least 1−δ .

Lastly, it remains to deal with ∑
T−1
t=T/2〈 ẑt , At(xt − x∗) 〉. Observe that this is a sum of a martingale difference

sequence with SSCM bounded by ∑
T−1
t=T/2 A2

t ‖xt − x∗‖2. Using Theorem 6.32 (the upper bound on squared

distances of the iterates xt to x∗), this is bounded above by O
(
(κ +1)2 log(1/δ) log2(T)

T 4

)
. Now, we can translate

74

our SSCM bound to a high probability bound on the martingale itself by applying Corollary 6.40 (which is

an application of Theorem 1.11 for bounding a martingale with subgaussian increments when it’s SSCM is

bounded) to obtain ∑
T−1
t=T/2〈 ẑt , At(xt − x∗) 〉= O

(
κ (κ +1) log(1/δ) log(T)

T 2

)
with probability at least 1−δ .

�

Now, we are ready to complete the proof of Lemma 6.28.

Proof (of Lemma 6.28). Let R, Ct , X be as promised from Lemma 6.33. These values provide a high probability

upper bound of R′ log(1/δ)+∑
T−1
t=T/2

Ct
t 〈 ẑt , wt 〉 on the SSCM of ZT , where R′ log(1/δ) = R. Corollary 6.41

(an application of Theorem 1.11 for martingales with subgaussian increments) allows us to then bound ZT by

κ
√

R′ log(1/δ) with probability at least 1− δ . Indeed, recalling that R′ = O
(
(κ+1)2 log2(T)

T 2

)
yields our desired

result. �

6.3.2 High probability bounds on squared distances to x∗

The main goal of this subsection is to prove Theorem 6.32.

Claim 6.34. Suppose f is 1-strongly-convex and 1-Lipschitz. Define Yt = t ‖xt+1− x∗‖2 and Ut = 〈 ẑt+1, xt+1−
x∗ 〉/‖xt+1− x∗‖ . Then,

Yt+1 ≤
(

t−1
t

)
Yt +2 ·Ut

√
Yt

t
+
‖ĝt+1‖2

t +1
.

The proof of Claim 6.34 is identical to the proof of Claim 3.7, except that we cannot bound ‖ĝt‖2 by 4 due

to the fact that the noise, ẑt , is not bounded as was assumed in Claim 3.7.

The main tool to prove this theorem is the following analog to Theorem 1.19. See Subsection 6.3.4 for a

proof.

Theorem 6.35. Let (Xt)
T
t=1 be a stochastic process and let (Ft)

T
t=1 be a filtration such that Xt is Ft-measurable

and Xt is non-negative almost surely. Let αt ∈ [0,1) and βt ,γt ≥ 0 for every t. Let ŵt be Ft+1-measurable such

that ‖ŵt |Ft‖ψ2
≤ τ for every t and E [ŵt | Ft] = 0. Let ŷt be Ft+1-measurable such that ‖ŷt |Ft‖ψ1

≤ ρ

for every t. Suppose Xt+1 ≤ αtXt + βtŵt
√

Xt + γt ŷt , for every t. Assume that E [exp(λX1)] ≤ exp(λK), for

λ ∈ (0,1/K]. Then,

• For every t, Pr [Xt ≥ K log(1/δ)]≤ eδ ,

• If σ1, . . . ,σT ≥ 0, then Pr
[

∑
T
t=1 σtXt ≥ K log(1/δ)∑

T
t=1 σt

]
≤ eδ ,

where K = maxT
t=1

(
2γt ρ

1−αt
, 4β 2

t τ2

1−αt

)
.

Proof (of Theorem 6.32). Consider the stochastic process (Yt)
T
t=1 where Yt is as defined by Claim 6.34. Note

that Yt satisfied the conditions of Theorem 6.35 with Xt = Yt , ŵt =Ut , αt =
t−1

t , βt =
2√
t , γt =

1
t+1 , ŷt = ‖ĝt‖2,

τ = κ , ρ = (κ + 1)2. Indeed, Yt is Ft-measurable and non-negative almost surely. Ut is Ft+1-measurable

which is mean zero conditioned on Ft . Furthermore, ‖Ut |Ft‖ψ2
≤ κ because ‖‖ẑt‖ |Ft‖ψ2

≤ κ . Further-

more, ‖ĝt‖2 is also Ft+1-measurable and
∥∥∥‖ĝt‖2 |Ft

∥∥∥ ≤ (κ + 1)2 by Claim 6.26. It’s easy to check that

max1≤t≤T

(
2γt ρ

1−αt
, 4β 2

t τ2

1−αt

)
= O

(
(κ +1)2

)
. We must check the following claim:

Claim 6.36. For all λ ∈ (0, 1
Θ((κ+1)2)

], E
[

exp
(

λ ‖x2− x∗‖2
)]
≤ exp

(
λΘ

(
(κ +1)2

))
.

75

Proof.

E
[

exp
(

λ ‖x2− x∗‖2
)]

= E
[

exp
(

λ

(
‖ΠX (x1− ĝ1)− x∗‖2

))]
≤ E

[
exp
(

λ

(
‖x1− x∗− ĝ1‖2

))]
= E

[
exp
(

λ

(
‖x1− x∗‖2 +‖ĝ1‖2−2〈 x1− x∗, ĝ1 〉

))]
.

By 1-strong-convexity and 1-Lipschitzness of f ,

‖xt − x∗‖ ≥ 〈gt , xt − x∗ 〉 ≥ 1
2
‖xt − x∗‖2 ,

for every t. Hence,

E
[

exp
(

λ ‖x2− x∗‖2
)]
≤ E

[
exp
(

λ

(
4+‖ĝ1‖2 +4‖ĝ1‖

))]
= exp(4λ)E

[
exp
(

λ ‖ĝ1‖2
)

exp(4λ ‖ĝ1‖)
]

≤ exp(4λ)
(

E
[

exp
(

2λ ‖ĝ1‖2
)])1/2

(E [exp(8λ ‖ĝ1‖)])1/2 (by Theorem A.2).

Recall that ‖‖ĝ1‖‖ψ2
= O(κ + 1) and

∥∥∥‖ĝ1‖2
∥∥∥

ψ1
= O(κ + 1)2 (by Claim 6.26). Therefore, we may bound the

MGF’s of ‖ĝ1‖ and ‖ĝ1‖2 using Claim 6.14 for the former and Claim 6.21 for the latter. That is we may write:

E
[

exp
(

2λ ‖ĝ1‖2
)]
≤ exp

(
2λ (κ +1)2) for all λ ∈ [0,

1
2(κ +1)2],

and

E [exp(8λ ‖ĝ1‖)]≤ exp
(
8λ (κ +1)2) for all λ ∈ [0,

1
8(κ +1)2].

Hence, we may plug in these MGF bounds to obtain

E
[

exp
(

λ ‖x2− x∗‖2
)]
≤ exp(4λ)exp

(
λ (κ +1)2

)
exp
(

4λ (κ +1)2
)
,

for all λ ∈ (0, 1
8(κ+1)2]. Hence,

E
[

exp
(

λ ‖x2− x∗‖2
)]
≤ exp

(
4λ +5λ (κ +1)2

)
≤ exp

(
9λ (κ +1)2) ,

for all λ ∈ (0, 1
8(κ+1)2]. �

�

6.3.3 Suffix averaging

The following is an extension of Theorem 1.17 to the case of subgaussian noise.

Theorem 6.37. Suppose f is 1-strongly convex and 1-Lipschitz. Consider running Algorithm 1 for T iterations

with step size ηt = 1/t. Let x∗ = argminx∈X f (x). Suppose that there exist κ > 0, such that ‖ẑt |Ft−1‖ψ2
≤ κ

76

for every t. Then, with probability at least 1−δ ,

f

(
1

T/2+1

T

∑
t=T/2

xt

)
− f (x∗) ≤ O

(
(κ +1)2 log(1/δ)

T

)
.

Proof. By Lemma 3.14 with w = x∗ we have

T

∑
t=T/2

[f (xt)− f (x∗)] ≤ 1
2

T

∑
t=T/2

ηt ‖ĝt‖2

︸ ︷︷ ︸
(a)

+
1

2ηT/2

∥∥xT/2− x∗
∥∥2

︸ ︷︷ ︸
(b)

+
T

∑
t=T/2

〈 ẑt , xt − x∗ 〉︸ ︷︷ ︸
(c)

. (6.1)

It suffices to bound each term of the right hand side of (6.1) by O(κ2 log(1/δ)) with probability at least 1−δ .

(a). By Claim 6.26, we have∥∥∥∥∥ T

∑
t=T/2

ηt ‖ĝt‖2

∥∥∥∥∥
ψ1

≤
T

∑
t=T/2

ηt

∥∥∥‖ĝt‖2
∥∥∥

ψ1
≤ O

(
(κ +1)2

)
.

Hence, we apply Claim 6.23 to bound (a) by O
(
(κ +1)2 log(1/δ)

)
with probability at least 1−δ .

(b). We have already bounded (b) by O
(
(κ +1)2 log(1/δ)

)
in Theorem 6.32.

(c). To bound (c), we will come up with a high probability bound on the sum of squared conditional magni-

tudes of (c) (observe that (c) is a martingale with conditionally subgaussian increments) and then apply

our transition from high probability bounds on the SSCM to high probability bounds on martingales

(Corollary 6.40). The SSCM of (c) is given by ∑
T
t=T/2 ‖xt − x∗‖2. Indeed, by Theorem 6.32, this is

bounded by O
(
(κ +1)2 log(1/δ)

)
with probability at least 1−δ . This translates into a high probability

bound on (c) using Corollary 6.40. Indeed, take at = ẑt , bt = xt − x∗, and R = κ2. This yields a bound of

O(κ (κ +1) log(1/δ)) with probability 1−δ on (c) as desired.

�

6.3.4 Proof of Theorem 6.35

Theorem 6.35. Let (Xt)
T
t=1 be a stochastic process and let (Ft)

T
t=1 be a filtration such that Xt is Ft-measurable

and Xt is non-negative almost surely. Let αt ∈ [0,1) and βt ,γt ≥ 0 for every t. Let ŵt be Ft+1-measurable such

that ‖ŵt |Ft‖ψ2
≤ τ for every t and E [ŵt | Ft] = 0. Let ŷt be Ft+1-measurable such that ‖ŷt |Ft‖ψ1

≤ ρ

for every t. Suppose Xt+1 ≤ αtXt + βtŵt
√

Xt + γt ŷt , for every t. Assume that E [exp(λX1)] ≤ exp(λK), for

λ ∈ (0,1/K]. Then,

• For every t, Pr [Xt ≥ K log(1/δ)]≤ eδ ,

• If σ1, . . . ,σT ≥ 0, then Pr
[

∑
T
t=1 σtXt ≥ K log(1/δ)∑

T
t=1 σt

]
≤ eδ ,

77

where K = maxT
t=1

(
2γt ρ

1−αt
, 4β 2

t τ2

1−αt

)
.

Proof (of Theorem 6.35). We begin by deriving a recursive MGF bound on Xt . The proof of this recursive

MGF bound differs from the proof of Claim 4.6 because in Claim 4.6 after conditioning on Ft , we were left to

bound the MGF of a subgaussian random variable. In this case however, due to the presence of ŷt , we will be

left to bound the MGF of the sum of a subgaussian and subexponential random variable. For this reason, the

MGF bound we obtain is valid in a smaller region than the MGF bound from Claim 4.6.

Claim 6.38. Suppose λ ∈ (0,minT
t=1

(
1

2γt ρ
, 1−αt

4β 2
t τ2

)
]. Then, for every t

E [exp(λXt+1)] ≤ exp(λγtρ)E
[

λXt

(
1+αt

2

)]
.

Proof (of Claim 6.38). Because ‖ŷt |Ft‖ψ1
≤ ρ , we have, by Claim 6.21:

E [exp(2λγt ŷt) | Ft] ≤ exp(2λγtρ) for all λ ∈ (0,
1

2γtρ
]. (6.2)

Furthermore, because ‖ŵt |Ft‖ψ2
≤ τ , E [ŵt | Ft] = 0 and

√
Xt is Ft-measurable, we have by Claim 6.17:

E
[

exp
(
2λβtŵt

√
Xt
)
| Ft

]
≤ exp

(
4λ

2
β

2
t τ

2Xt
)

for all λ ∈ R. (6.3)

Now, we put these MGF bounds together (assuming λ ∈ (0,minT
t=1

1
2γt ρ

]:

E [exp(λXt+1)] ≤ E
[

exp(λαtXt)E
[

exp
(
λβtŵt

√
Xt
)

exp(λγt ŷt) | Ft
]]

≤ E
[

exp(λαtXt)E
[

exp
(
2λβtŵt

√
Xt
)
| Ft

]1/2 E [exp(2λγt ŷt) | Ft]
1/2
]

≤ E
[

exp(λαtXt)exp
(
2λ

2
β

2
t τ

2Xt
)

exp(λγtρ)
]

(by Eq. (6.2) and Eq. (6.3))

= exp(λγtρ)E
[

exp
(
λXt

(
αt +2λβ

2
t τ

2))] .
�

If we assume that λ ∈ (0,minT
t=1

1−αt
4β 2

t τ2], then we have

E [exp(λXt+1)] ≤ exp(λγtρ)E
[

exp
(

λXt

(
1+αt

2

))]
,

as desired. Next, we prove an MGF bound on Xt .

Claim 6.39. For every t, and for every λ ∈ (0,1/K], we have E [exp(λXt)] ≤ exp(λK) . That is, ‖Xt‖ψ1
≤

K/ ln2.

Proof. Let λ ∈ (0,1/K]. We proceed by induction over t. The base case holds by assumption. Assume that

78

E [exp(λXt)]≤ exp(λK). Observe that λ satisfies the condition in Claim 6.38. Then,

E [exp(λXt+1)] ≤ exp(λγtρ)E
[

exp
(

λXt

(
1+αt

2

))]
(by Claim 6.38)

≤ exp(λγtρ)exp
(

λK
(

1+αt

2

))
(by induction hypothesis)

= exp
(

λ

(
γtρ +K

(
1+αt

2

)))
.

Hence, we need K ≥ K
(1+αt

2

)
+ γtρ. Indeed, by definition of K,

K ≥ 2γtρ

1−αt
=

γtρ

1−
(1+αt

2

) ,
which yields the desired inequality. �

Now, we can use Claim 6.39 to prove Theorem 6.35. The first claim in Theorem 6.35 follows from using

Claim 6.39 and the MGF bound to tail bound transition given by Claim A.7.

Next, we prove the second claim from Theorem 6.35. Claim 6.39 gives that for every t and for all λ ∈
(0,1/(σtK)], we have E [exp(λσtXt)]≤ exp(λσtK). Hence, we can combine these MGF bounds using Lemma A.4

to obtain E
[

exp
(
λ ∑

T
t=1 σtXt

)]
≤ exp

(
λK ∑

T
t=1 σt

)
for all λ ∈ (0,

(
K ∑

T
t=1 σt

)−1
]. With this MGF bound in

hand, we may apply the transition from MGF bounds to tail bounds given by Claim A.7 to complete the proof

of the second claim from Theorem 6.35. �

6.3.5 Using Theorem 1.11 with conditionally subgaussian increments

Corollary 6.40. Let {Ft}T
t=1 be a filtration and suppose that at are Ft-measurable random variables and bt

are Ft−1 measurable random variables. Further, suppose that

1. There exists κ > 0 such that ‖at |Ft−1‖ψ2
≤ κ for every t,

2. E [at | Ft−1] = 0 for every t,

3. ∑
T
t=1 ‖bt‖2 ≤ R log(1/δ) with probability at least 1−O(δ).

Define dt = 〈at , bt 〉. Then, ∑
T
t=1 dt = O

(
κ
√

R log(1/δ)
)

with probability at least 1−O(δ).

Proof. The assumption that E [at | Ft−1] = 0 and ‖at |Ft−1‖ψ2
≤ κ imply

E [exp(λdt) | Ft−1] ≤ exp
(

λ
2
κ

2 ‖bt‖2
)
,

by Claim 6.17 because ‖dt |Ft−1‖ψ2
≤ κ ‖bt‖.

We may apply Lemma 4.3 with dt = 〈at , bt 〉, vt−1 = 2κ2 ‖bt‖2, αt = 0 for every i, and R(δ)= 2κ2R log(1/δ)

to obtain

Pr

[
T

∑
t=1

dt ≥ x

]
≤ δ + exp

(
− x2

16κ2R log(1/δ)
.

)
The final term above is at most δ if x = 4κ

√
R log(1/δ). �

Corollary 6.41. Let {Ft}T
t=1 be a filtration and suppose that at are Ft-measurable random variables and bt are

Ft−1-measurable random variables. Define dt = 〈at , bt 〉. Assume there exists κ > 0 such that ‖at |Ft−1‖ψ2
≤ κ

79

and E [at | Ft−1] = 0. Suppose that there exists R> 0 and non-negative values {αt}T−1
t=1 where κ2 max{αt}T−1

t=1 =

O
(
κ
√

R
)
, such that exactly one of the following holds for every δ ∈ (0,1) :

1. ∑
T
t=1 ‖bt‖2 ≤ ∑

T−1
t=1 αtdt +R log(1/δ) with probability at least 1−O(δ),

2. ∑
T
t=1 ‖bt‖2 ≤ ∑

T−1
t=1 αtdt +R

√
log(1/δ) with probability at least 1−O(δ).

Then, ∑
T
t=1 dt ≤ O

(
κ
√

R log(1/δ)
)

with probability at least 1−O(δ).

Proof. We prove only the first case, the second case can be proved by bounding
√

log(1/δ) by log(1/δ) and

using the proof of the first case.

Proceeding as in the proof of Corollary 6.40, we have

E [exp(λdt) | Ft−1] ≤ exp
(

λ
2
κ

2 ‖bt‖2
)
.

We may now apply Lemma 4.3 with dt = 〈at , bt 〉 and vt−1 = 2κ2 ‖bt‖2, with αT = 0 and R(δ) = R log(1/δ)

to obtain:

Pr

[
T

∑
t=1

dt ≥ x

]
≤ δ + exp

(
− x2

(8κ2 maxT−1
t=1 (αt) · x+16κ2R)

)
.

Recalling that κ2 max{αt}T−1
t=1 = O(κ

√
R), we may set x = Θ

(
κ
√

R log(1/δ)
)

to bound the final term by δ .

�

80

Chapter 7

Conclusions and Future Work

In this thesis we identified some gaps in the theoretical understanding of the role that the averaging of iterates

produced by SGD plays in the non-smooth setting. We fully characterized the performance of the final iterate in

both the strongly-convex and non strongly-convex setting. That is, we have provided deterministic lower bounds

matching the expected upper bounds of Shamir and Zhang [43], answering a COLT 2012 open question [42].

Moreover, we have extended the known expected convergence rates to hold with arbitrarily high probability.

Next, we identified a shortage of high-probability upper bounds in the strongly-convex setting of non-

smooth SGD. The work in this thesis establishes two optimal and tight (even including log(1/δ) factors) high-

probability upper bounds, using suffix-averaging from [36] and non-uniform averaging from [26].

Along the way, we developed a new concentration inequality which extends the classical Freedman’s in-

equality. This concentration inequality was a key probabilistic tool used on multiple occasions throughout this

thesis, perhaps highlighting it’s practical significance. The Generalized Freedman Inequality was used crucially

to break the barrier of sub-optimal high probability results in the strongly-convex setting.

7.1 Open questions
There remain some interesting open questions. The first is whether or not there exists a sequence of step sizes

for which the individual iterates obtain, for all t, error o(log(t)/t) in the strongly-convex cases and o(log(t)/
√

t)

in the Lipschitz case. Note that in the strongly convex case, Jain et al. [20] showed that for a fixed T , one can

obtain a rate of O(1/T) for the last iterate and that in the stochastic setting, no choice of step sizes yields

expected error O(1/t) for all t > 0.

Another question is to determine the exact dependence on δ of our high probability upper bound on the

error of the final iterate. In the strongly-convex case, our best lower bound has an additive log(1/δ) term,

whereas our upper bound has a multiplicative factor of log(1/δ). In contrast, for the final iterate in the Lipschitz

case, we do not know a log(1/δ) lower bound on the error; conceivably the upper bound could be improved to

O
(
(log(T)+

√
log(1/δ))/

√
T
)
.

81

Bibliography

[1] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: A meta algorithm and its
applications. Theory of Computing, 8(6):121–164, 2012. → page 3

[2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gambling in a rigged casino: The adversarial
multi-arm bandit problem. In Proceedings of FOCS, pages 322–331, 1995. → page 1

[3] J. P. Bailey and G. Piliouras. Multiplicative weights update in zero-sum games. In Proceedings of the
2018 ACM Conference on Economics and Computation, pages 321–338. ACM, 2018. → page 3

[4] N. Bansal and A. Gupta. Potential-function proofs for first-order methods. arXiv:1712.04581, 2017. →
page 1

[5] V. Barbu and T. Precupanu. Convexity and optimization in Banach spaces. Springer Science & Business
Media, 2012. → page 52

[6] P. L. Bartlett, V. Dani, T. Hayes, S. Kakade, A. Rakhlin, and A. Tewari. High-probability regret bounds
for bandit online linear optimization. In 21th Annual Conference on Learning Theory (COLT 2008), July
2008. → page 9

[7] S. Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends in Machine
Learning, 8(3–4), 2015. → pages 1, 8

[8] P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and S.-H. Teng. Electrical flows, laplacian
systems, and faster approximation of maximum flow in undirected graphs. In Proceedings of STOC,
pages 273–282. ACM, 2011. → page 3

[9] M. B. Cohen, Y. T. Lee, G. Miller, J. Pachocki, and A. Sidford. Geometric median in nearly linear time.
In Proceedings of STOC, pages 9–21, 2016. → page 1

[10] V. de la Peña. A general class of exponential inequalities for martingales and ratios. The Annals of
Probability, 27(1):537–564, 1999. → pages 5, 7

[11] X. Fan, I. Grama, and Q. Liu. Exponential inequalities for martingales with applications. Electronic
Journal of Probability, 20, 2015. → pages 5, 7

[12] V. Feldman, I. Mironov, K. Talwar, and A. Thakurta. Privacy amplification by iteration. In Proceedings of
FOCS, 2018. → page 1

[13] D. A. Freedman. On tail probabilities for martingales. Annals of Probability, 3(1):100–118, 1975. →
pages 5, 6, 7

[14] Y. Freund, R. E. Schapire, et al. Adaptive game playing using multiplicative weights. Games and
Economic Behavior, 29(1-2):79–103, 1999. → page 3

82

https://arxiv.org/abs/1712.04581

[15] N. J. Harvey, C. Liaw, Y. Plan, and S. Randhawa. Tight analyses for non-smooth stochastic gradient
descent. In Conference on Learning Theory, pages 1579–1613, 2019. → pages v, 38

[16] E. Hazan. Introduction to online convex optimization. Foundations and Trends in Optimization, 2(3–4),
2015. → page 1

[17] E. Hazan and S. Kale. Beyond the regret minimization barrier: optimal algorithms for stochastic
strongly-convex optimization. The Journal of Machine Learning Research, 15(1):2489–2512, 2014. →
pages iii, 2, 8, 9

[18] E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimization.
Machine Learning, 69(2-3):169–192, 2007. → page 2

[19] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms I.
Springer-Verlag, 1996. → pages 11, 14, 86

[20] P. Jain, D. Nagaraj, and P. Netrapalli. Making the last iterate of sgd information theoretically optimal. In
Conference on Learning Theory, pages 1752–1755, 2019. → pages 2, 81

[21] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In
Advances in neural information processing systems, pages 315–323, 2013. → page 1

[22] S. M. Kakade and A. Tewari. On the generalization ability of online strongly convex programming
algorithms. In NIPS, pages 801–808, 2008. → pages 2, 9

[23] J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu. A simple, combinatorial algorithm for solving SDD
systems in nearly-linear time. In Proceedings of STOC, 2013. → page 1

[24] P. Klein and N. E. Young. On the number of iterations for Dantzig–Wolfe optimization and
packing-covering approximation algorithms. SIAM Journal on Computing, 44(4):1154–1172, 2015. →
page 62

[25] A. Klenke. Probability theory: a comprehensive course. Springer Science & Business Media, 2013. →
page 46

[26] S. Lacoste-Julien, M. Schmidt, and F. Bach. A simpler approach to obtaining an o (1/t) convergence rate
for the projected stochastic subgradient method. arXiv preprint arXiv:1212.2002, 2012. → pages
iii, 37, 38, 39, 81

[27] S. Lacoste-Julien, M. W. Schmidt, and F. R. Bach. A simpler approach to obtaining an O(1/t)
convergence rate for the projected stochastic subgradient method, Dec. 2012. arXiv:1212.2002. → page 2

[28] Y. T. Lee and A. Sidford. Efficient accelerated coordinate descent methods and faster algorithms for
solving linear systems. In Proceedings of FOCS, 2013. → page 1

[29] Y. T. Lee, S. Rao, and N. Srivastava. A new approach to computing maximum flows using electrical
flows. In Proceedings of STOC, pages 755–764, 2013. → page 1

[30] P. Massart. Concentration inequalities and model selection. Springer, 2007. → page 40

[31] C. McDiarmid. Concentration. In Probabilistic methods for algorithmic discrete mathematics, pages
195–248. Springer, 1998. → page 5

[32] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to
stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609, 2009. → pages 1, 3

83

[33] A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization. Wiley,
1983. → page 2

[34] S. A. Plotkin, D. B. Shmoys, and É. Tardos. Fast approximation algorithms for fractional packing and
covering problems. Mathematics of Operations Research, 20(2):257–301, 1995. → page 3

[35] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM Journal
on Control and Optimization, 30(4):838–855, 1992. → page 3

[36] A. Rakhlin, O. Shamir, and K. Sridharan. Making gradient descent optimal for strongly convex stochastic
optimization. In Proceedings of ICML, 2012. → pages iii, 2, 3, 8, 9, 22, 23, 35, 38, 41, 42, 81

[37] H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical Statistics, 22(3):
400–407, Sept. 1951. → page 1

[38] W. Rudin. Real and Complex Analysis. McGraw-Hill, 1987. → page 58

[39] D. Ruppert. Efficient estimations from a slowly convergent Robbins-Monro process. Technical report,
Cornell University Operations Research and Industrial Engineering, 1988. → page 3

[40] M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average gradient.
Mathematical Programming, 162(1-2):83–112, 2017. → page 1

[41] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: primal estimated sub-gradient solver for
SVM. Mathematical Programming, 127(1):3–30, 2011. → page 2

[42] O. Shamir. Open problem: Is averaging needed for strongly convex stochastic gradient descent?
Proceedings of the 25th Annual Conference on Learning Theory, PMLR, 23:47.1–47.3, 2012. → pages
iii, 2, 3, 81

[43] O. Shamir and T. Zhang. Stochastic gradient descent for non-smooth optimization: Convergence results
and optimal averaging schemes. Proceedings of the 30th International Conference on Machine Learning,
PMLR, 28(1):71–79, 2013. → pages 2, 7, 8, 9, 20, 81

[44] T. Strohmer and R. Vershynin. A randomized solver for linear systems with exponential convergence. In
Proceedings of APPROX/RANDOM, 2006. → page 1

[45] R. Vershynin. High-dimensional probability: An introduction with applications in data science.
Cambridge University Press, 2018. → pages 67, 85

[46] N. Vishnoi. Algorithms for convex optimization, 2018.
https://nisheethvishnoi.wordpress.com/convex-optimization/. → page 1

84

https://nisheethvishnoi.wordpress.com/convex-optimization/

Appendix A

Standard Results

Lemma A.1 (Exponentiated Markov). Let X be a random variable and λ > 0. Then Pr [X > t]≤ exp(−λ t)E [exp(λX)].

Theorem A.2 (Cauchy-Schwarz). Let X and Y be random variables. Then |E [XY]|2 ≤ E
[

X2
]

E
[
Y 2
]
.

Theorem A.3 (Generalized Hölder’s Inequality). Let X1, . . . ,Xn be random variables and p1, . . . , pn ≥ 1 be such

that ∑i 1/pi = 1. Then E [∏n
i=1|Xi|]≤∏

n
i=1 (E [|Xi|pi])1/pi

Proof. Follows by induction using Hölder’s inequality. �

Lemma A.4. Let X1, . . . ,Xn be random variables and K1, . . . ,Kn > 0 be such that E [exp(λXi)]≤ exp(λKi) for

all 0 < λ ≤ 1/Ki. Then E [exp(λ ∑
n
i=1 Xi)]≤ exp(λ ∑

n
i=1 Ki) for all 0 < λ ≤ 1/∑

n
i=1 Ki.

Proof. Let pi =∑
n
j=1 K j/Ki and observe that piKi =∑

n
j=1 K j. By assumption, if λ pi≤ 1/Ki (i.e. λ ≤ 1/∑

n
j=1 K j)

then E [exp(λ piXi)]≤ exp(λ piKi). Applying Theorem A.3, we conclude that

E

[
exp(λ

n

∑
i=1

Xi)

]
≤

n

∏
i=1

E [exp(λ piXi)]
1/pi ≤

n

∏
i=1

exp(λ piKi)
1/pi = exp(λ

n

∑
i=1

Ki).

�

Lemma A.5 (Hoeffding’s Lemma). Let X be any real valued random variable with expected value E [X] = 0

and such that a≤ X ≤ b almost surely. Then, for all λ ∈ R, E [exp(λX)]≤ exp
(
λ 2(b−a)2/8

)
.

Claim A.6 ([45, Proposition 2.5.2]). Suppose there is c > 0 such that for all 0 < λ ≤ 1
c , E

[
exp
(
λ 2X2

)]
≤

exp
(
λ 2c2

)
. Then, if X is mean zero it holds that

E
[

exp
(
λX
)]
≤ exp

(
λ

2c2),
for all λ ∈ R.

Proof. Without loss of generality, assume c = 1; otherwise replace X with X/c. Using the numeric inequality

ex ≤ x+ex2
which is valid for all x ∈R, if |λ | ≤ 1 then E [exp(λX)]≤ E [λX]+E

[
exp(λ 2X2)

]
≤ exp(λ 2). On

the other hand, if |λ | ≥ 1, we may use the numeric inequality1 ab≤ a2/2+b2/2, valid for all a,b ∈R, to obtain

E [exp(λX)]≤ E
[

exp(λ 2/2+X2/2)
]
≤ exp(λ 2/2)exp(λ 2/2) = exp(λ 2).

1Young’s Inequality

85

�

Claim A.7. Suppose X is a random variable such that there exists constants c and C such that E [exp(λX)]≤
cexp(λC) for all 0 < λ ≤ 1/C. Then, Pr [X ≥C log(1/δ)]≤ ceδ .

Proof. Apply Lemma A.1 to Pr [X ≥ t] to get Pr [X ≥ t]≤ cexp(−λ t +λC). Set λ = 1/C and t =C log(1/δ)

to complete the proof. �

Claim A.8 ([19, Eq. (3.1.6)]). Let X be a convex set and x ∈X ⊆ Rn. Then ‖ΠX (y)− x‖ ≤ ‖y− x‖ for all

y ∈ Rn.

Claim A.9 ([19, 4.2.1]). Let A : Rn→ Rm be a linear map and let g be a finite convex function on Rm. Then

∂ (g◦A)(x) = A
T
∂g(Ax) for all x ∈ Rm.

A.1 Useful scalar inequalities
Claim A.10. For 1≤ a≤ b, ∑

b
k=a

1√
k
≤ 2 b−a+1√

b
.

Proof.
b

∑
k=a

1√
k
≤
∫ b

a−1

1√
x

dx = 2(
√

b−
√

a−1) = 2
b−a+1√
b+
√

a−1
.

�

Claim A.11. For any 1≤ j ≤ t ≤ T , we have t− j
(T− j+1)

√
t ≤

1√
T

.

Proof. The function g(x) = x− j√
x has derivative

g′(x) =
1√
x

(
1− x− j

2x

)
=

1√
x

(1
2
+

j
2x

)
.

This is positive for all x > 0 and j ≥ 0, and so

t− j√
t
≤ T − j√

T
,

for all 0 < t ≤ T . This implies the claim. �

Claim A.12. Assume 0≤ k and k+1≤ m.

m

∑
`=k+1

1
`2 ≤

1
k
− 1

m
.

Proof. The sum may be upper-bounded by an integral as follows:

m

∑
`=k+1

1
`2 ≤

∫ m

k

1
x2 dx =

1
k
− 1

m
.

�

86

Claim A.13. Let α j =
1

(T− j)(T− j+1) . Let a,b be such that a≤ b < T . Then,

b

∑
j=a

α j =
1

T −b
− 1

T −a+1
≤ 1

T −b
.

Proof.

b

∑
j=a

α j =
b

∑
j=a

1
(T − j)(T − j+1)

=
b

∑
j=a

(
1

T − j
− 1

T − (j−1)

)
,

which is a telescoping sum. �

Claim A.14. Suppose a < b. Then, log(b/a)≤ (b−a)/a.

Claim A.15. Let b≥ a > 1. Then, ∑
b
i=a

1
i ≤ log

(
b/(a−1)

)
.

87

	Abstract
	Lay Summary
	Preface
	Table of Contents
	Acknowledgments
	Dedication
	1 Introduction
	1.1 Introduction
	1.2 Preliminaries
	1.2.1 Preliminaries on martingales

	1.3 Our contributions
	1.3.1 High probability upper bounds
	1.3.2 Lower bounds
	1.3.3 High probability upper bound for suffix averaging

	1.4 Techniques

	2 Finite Dimensional Lower Bounds
	2.1 Lower bound on error of final iterate, strongly convex case
	2.2 Lower bound on error of final iterate, Lipschitz case
	2.3 Omitted proofs for the lower bounds
	2.3.1 Strongly convex case
	2.3.2 Lipschitz case
	2.3.3 Monotonicity

	3 High Probability Bounds
	3.1 Upper bound on error of final iterate, strongly convex case
	3.1.1 Bounding the noise
	3.1.2 High probability bounds on squared distances to x*
	3.1.3 Upper bound on error of suffix averaging

	3.2 Upper bound on error of final iterate, Lipschitz case: proof sketch
	3.2.1 Bounding the noise

	3.3 Omitted proofs from Section 3.1
	3.3.1 Standard analysis of SGD
	3.3.2 Proof of Lemma 3.1
	3.3.3 Proof of Lemma 3.3
	3.3.4 Proof of Lemma 3.4
	3.3.5 Proof of Claim 3.18
	3.3.6 Proof of Claim 3.7

	3.4 Alternative proof of Theorem 1.17
	3.4.1 Proof of Lemma 3.22
	3.4.2 Proof of Lemma 3.23

	3.5 High probability bound on a non-uniform averaging scheme
	3.5.1 Main idea of proof of Theorem 3.25
	3.5.2 High probability upper bound analysis
	3.5.3 Proof of Claim 3.26
	3.5.4 Bounding ZT
	3.5.5 Missing proofs from Subsection 3.5.4

	4 Probabilistic Tools
	4.1 Proof of Theorem 1.11 and corollaries
	4.1.1 Corollaries of Theorem 1.11

	4.2 Proof of Theorem 1.19

	5 Infinite Dimensional and Probabilistic Lower Bounds
	5.1 Functions attaining large error infinitely often
	5.1.1 Proof of Theorem 5.1
	5.1.2 Proof of Lemma 5.5
	5.1.3 Proof of Claim 5.8

	5.2 Necessity of log(1/delta)

	6 Extensions and Generalizations
	6.1 Generalizations
	6.1.1 Scaling assumptions
	6.1.2 Subgaussian noise

	6.2 Subgaussian and subexponential random variables
	6.2.1 Subgaussian random variables
	6.2.2 Subexponential random variables
	6.2.3 Relationship between subgaussian and subexponential random variables

	6.3 Upper bound on error of final iterate: subgaussian noise
	6.3.1 Upper bound on error of final iterate, strongly convex case with subgaussian noise
	6.3.2 High probability bounds on squared distances to x*
	6.3.3 Suffix averaging
	6.3.4 Proof of Theorem 6.35
	6.3.5 Using Theorem 1.11 with conditionally subgaussian increments

	7 Conclusions and Future Work
	7.1 Open questions

	Bibliography
	A Standard Results
	A.1 Useful scalar inequalities

